
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

MAGISTER THESIS

Jakub Adámek

Neural Networks Controlling Prosody of Czech language

Department of software engineering

Supervisor: Mgr. Roman Neruda, CSc.

Computer Science

I would like to thank to Roman Neruda for guiding the works on the
thesis, Jirka Hanika for giving me all the advise needed and Petr Horák for
preparing the speech corpus. Last but not least thanks to Eva for all support.

I have written this Thesis by myself using only the sources cited. Lending
the Thesis is allowed.

Prague, 19.4.2002 Jakub Adámek

Contents

I Neural Networks 1

1 Introduction 2
1.1 Perceptron network . 2
1.2 Radial Basis Function network 4
1.3 Comparison . 5

2 Perceptron network learning 7
2.1 Weights initialization . 8
2.2 Error function . 8
2.3 Computing gradient — backpropagation 9
2.4 Weight perturbation . 11
2.5 Stable dynamic parameter adaptation 12
2.6 Modified Levenberg-Marquardt 14
2.7 Methods comparison . 16
2.8 Generalization improvement 17
2.9 Recurrent networks . 17

3 Training data 20

4 Training process 23

5 Networks in specific languages 25
5.1 German . 25
5.2 Korean . 27

II Practical part 29

6 Development environment 30
6.1 Epos . 30
6.2 Bang 3 . 32

ii

CONTENTS iii

7 Bang agents 34
7.1 Configuration grammar . 34
7.2 PerceptronNN agent . 36
7.3 TrainingData agent . 39
7.4 TrainingProcess agent . 43

8 Epos neuralnet rule 46
8.1 Inputs . 48

9 Neural network controlling prosody 52

10 Summary 57

A Terminology 59

B Source files contribution 61

C Network Training Corpus 64

D User guide 66

CONTENTS iv

Abstrakt

Název práce: Neuronové śıtě ř́ıd́ıćı prozódii české řeči
Autor: Jakub Adámek
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: Mgr. Roman Neruda, CSc.
E-mail vedoućıho: roman@cs.cas.cz
Abstrakt: Práce popisuje teoretické základy a programové prostřed́ı pro

učeńı neuronových śıt́ı perceptronového typu, včetně rekurentńı śıtě pro
časové řady. Implementovány jsou dva pokročilé uč́ıćı algoritmy, jeden ze
skupiny algoritmů sdruženého gradientu, druhý Levenberg-Marquardt̊uv s ur-
čitým vylepšeńım. Śı̌t je pak použita k řešeńı praktického problému genero-
váńı prozódie v systému Epos pro syntézu řeči z psaného textu. Inspiraci
poskytuje systém pro syntézu řeči použ́ıvaj́ıćı neuronovou śı̌t v němčině.
V programu je kladen d̊uraz na snadné definováńı nových vstup̊u śıtě. Po-
moćı malého korpusu je naučena konkrétńı neuronová śı̌t generuj́ıćı prozódii
v českých oznamovaćıch větách čtených neutrálńım hlasem.

Kĺıčová slova: neuronové śıtě, perceptron, syntéza řeči, prozódie

Abstract

Title: Neural Networks Controlling Prosody of Czech language
Author: Jakub Adámek
Department: Department of Software Engineering
Supervisor: Mgr. Roman Neruda, CSc.
Supervisor’s e-mail address: roman@cs.cas.cz
Abstract: This work describes a theoretical basis and a program environ-

ment for learning perceptron-based neural networks, including recurrent ones
for time series. Two advanced learning techniques are implemented, one from
the group of conjugate gradients, the other being Levenberg-Marquardt’s
with some improvement. The network is than used to solve a practical prob-
lem of prosody generation in a text-to-speech system Epos. An inspiration is
gained from other text-to-speech system using neural networks in German.
The program emphasizes an easy definition of new network inputs. A par-
ticular network generating prosody of Czech indicative sentences read in a
neutral voice is trained with a small corpus and its results are evaluated.

Keywords: neural networks, perceptron, text-to-speech, prosody

Goal and scope of this thesis

The present thesis has been initiated by the need of prosody generation
formed by a neural network in the Text-To-Speech (TTS) system Epos. There
was some very simple neural network support in the system already, which
was never used in practice. The current prosody in Epos is formed by rules.
There was a hope of better results and an interest in any results from a neural
network. The problem of prosody generation involves time series prediction
— prosody generated for syllables must take into account the neighbour
syllables. Thus the recurrent network structure had to be supported.

The goal was to prepare an environment allowing to intelligibly describe
inputs to a neural network and the usage of its outputs so that people who
do not understand programming but do understand linguistic may use it.
And to create another environment in which the neural network learns. Also
a particular network for Czech indicative sentences read in a neutral voice
was to be prepared.

A parallel goal was to provide neural network support in the multi-agent
system for artificial intelligence Bang 3, created at the Institute of Computer
Science, Czech Academy of Science, Prague. The neural networks module
should implement the perceptron networks and their training algorithms.
The Bang system contains interchangeable agents, which means the percep-
tron network agent may be replaced by other network architectures and other
agents may provide other learning algorithms, genetic ones for instance. In
the Bang 2 system the Radial Basis Function networks were implemented by
Petra Kudová [10] and will be re-implemented in Bang 3.

It is necessary to clearly state what are my own contributions in this
thesis. All the C++ source files concerning neural networks are written by
myself. A smaller part of the basic data structures and some XML read
/ write procedures are written by myself. The Bang environment with ev-
erything concerning agents and their communication was written by others.
The whole Epos system was written by others, I have added a new prosody
rule “neuralnet” and the code working with its configuration file. The code
written by myself is described in more detail in Appendix B.

v

CONTENTS vi

This thesis is divided into two parts. The Neural Networks part describes
thoroughly the perceptron networks with some advanced learning algorithms
and other details concerning generalization improvement, training data and
training process. The Radial Basis Function networks are roughly described
and compared with the perceptron ones. This part contains the main points
of the neural network successfully used in the Swiss TTS system SVOX. The
Practical part describes the basics of the Epos and Bang 3 systems. It tells
about the agents created and about the neural network usage in Epos and
describes the particular network included with this thesis.

Part I

Neural Networks

1

Chapter 1

Introduction

The Neural Networks part starts with a thorough description of the per-
ceptron networks. The Radial Basis Function networks are than roughly
pictured and compared with the perceptron ones. Next chapter is concerned
with the learning algorithms, explains the details related to gradient compu-
tation, weights initialization and error functions and presents two advanced
learning algorithms. The problem of generalization and recurrent networks
for time series prediction are mentioned. Next chapters tell how to work
with training data and how does the training process run. The last chapter
describes two neual networks used in a Korean and a German text-to-speech
system.

1.1 Perceptron network

The perceptron and RBF network models are used to approximate a function
f : I → O, I ⊆ R

n, O ⊆ R
m. The network is trained by examples of x ∈ I

and the corresponding f(x). When the example data cover the input region I
enough, the resulting network is able to more or less accurately approximate
the values for inputs which it has never seen. The perceptron neural network
model is used in 80% of all the neural networks’ applications [1, p. 52].

Let us explain the idea of perceptron networks on an example of a feed-
forward two-layer neural network. The perceptron units are organized into
layers. Feed-forward means the network is acyclic and usually also that
connections lead only from the neurons on the layer i to the neurons on the
layer i+1 and all the neurons on the layer i are connected to all the neurons
on the layer i + 1. The inputs are considered as the layer 0. The number of
layers includes the output layer and does not include the input layer. The
layers between the input and the output layer are called hidden layers, a

2

CHAPTER 1. INTRODUCTION 3

two-layer network has one hidden layer.
The network contains units called perceptrons. Each perceptron has its

inputs p1, . . ., pR and a threshold which sets its sensibility — some neuron
transfer functions discriminate well only in a region around 0 and are nearly
constant for numbers with a big absolute value. The negative of the threshold
b = −threshold is called bias. A perceptron activation n is a sum

n = b +
R∑

i=1

wipi

and a perceptron’s output is

o = f(n) = f

(
b +

R∑
i=1

wipi

)
(1.1)

A transfer function f is applied to the activation to get the output. The
most usual ones are:

• Linear function
purelin(n) = n

• Hard limit, which is also called step activation.

hardlim(n) =

{
0 when n < 0,
1 otherwise

• Logical sigmoid, which continuously approximates the hard limit. The
parameter λ is often set to 1. Jiroušek [8] experimented with the λ
adaptation and concluded not to use other values than 1.

logsig(n) =
1

1 + e−λn

• Hyperbolic tangent sigmoid — the second expression is computation-
ally much faster as it contains only one ex computation:

tanh(n) =
en − e−n

en + e−n
=

2

1 + e−2n
− 1

When using the backpropagation method, the transfer function must be
derivable. All except the hard limit are. Usually the logical sigmoid is used
in the hidden layers and the linear function or the logical sigmoid in the
output layer depending on the desired output interval.

CHAPTER 1. INTRODUCTION 4

The network works in steps. First it calculates outputs for the neurons
in the first layer. The output vector a1 is the input for the next layer:

a1
i = fi

(
bi +

n0−1∑
j=0

wjipj

)
, i = n0, . . . , n1 − 1, (1.2)

where n0 is the number of inputs, ni − ni−1 number of neurons in the i-th
layer, wji the weight of the connection from neuron j to neuron i, pj the j-th
input.

The network calculates the outputs of the second layer in the same way
and these are the outputs o of the whole network:

oi = fi

(
bi +

n1−1∑
j=n0

wjia
1
j

)
, i = n1, . . . , n2 − 1 (1.3)

More general architectures like more hidden layers or connections between
the neurons on the same layer are sometimes considered. The basic require-
ment is the network being feed-forward, i.e. acyclic — there must be an order
that allows to know the outputs of all the neurons connected to a neuron at
the moment we compute its output.

1.2 Radial Basis Function network

Another class of the neural network model are the Radial Basis Function
(RBF) networks [2]. The activation of a hidden unit is determined by the
distance (usually Euclidean) between the input vector x and a prototype
vector µj, the output is φ(‖x − µj‖), where φ is some non-linear function,
the most common being the Gaussian

φ(x) = exp

(
− x2

2σ2

)
, (1.4)

where σ is a parameter whose value controls the smoothness properties of
the function, exp(x) means ex.

The output of the whole network is a linear combination of the basis
functions plus a bias wk0

yk(x) =
M∑

j=1

wkjφj(x) + wk0, (1.5)

where M is the number of radial basis units and wkj the weight of the con-
nection between the j-th unit and the k-th output.

CHAPTER 1. INTRODUCTION 5

For the case of the Gaussian basis function we have

φj(x) = exp

(
−‖x − µj‖

2σ2
j

)
, (1.6)

where x is an input vector and µj is the vector determining the center of the
basis function φj.

More general topologies, like more than one hidden layer, are not normally
used. A key aspect of the radial basis function networks is the distinction
between the roles of the first and second layers of weights [2, p. 170]. This
leads to a two-stage training procedure. In the first stage the parameters gov-
erning the basis functions (e.g. µj and σj) are determined by unsupervised
training techniques from the input data set {xn} alone. In the second stage
the basis functions are kept fixed while the second-layer weights are found.
We can split the first stage into finding the unit centers µj and finding the
remaining parameters (like σj) [10].

More details about the RBF networks and their training may be found
in Kudová [10].

1.3 Comparison

Both RBF and perceptron networks approximate arbitrary non-linear func-
tional mappings between multidimensional spaces. But the structures of the
networks are very different. Some of the important differences are [2, p. 82]:

• The perceptrons divide the space into a number of subspaces by hyper-
planes. The radial basis units use distance to a prototype vector with
a usually localized function.

• A perceptron network forms a distributed representation in the space
— many hidden units typically contribute to the output value. The
interference between the hidden units results in a highly non-linear
training process with problems of local minima. By contrast, only a
few radial basis units with localized basis functions have significant
activations and determine the output.

• Perceptron networks have more layers of weights and a complex pattern
of connectivity, not all the possible weights are usually present. Also,
the activation functions may differ for each neuron. An RBF network,
however, generally has a simple architecture described above.

CHAPTER 1. INTRODUCTION 6

• All the parameters of perceptron networks are determined at once,
while the RBF network is typically trained in a much faster two stage
technique. Although gradient learning similar to the steepest gradient
descent (see p. 11) is used successfully for RBF networks, too [10].

Chapter 2

Perceptron network learning
algorithms

The learning goal is the network approximates the outputs for any inputs
from given range. We provide examples to the training algorithm — inputs
and desired outputs. All the range must be covered with examples, otherwise
there is no chance to achieve good performance.

Although it looks like that, our primary goal is not to learn the network
to answer correctly to the training inputs. We want that it is capable of
generalization — that it answers correctly to inputs which were not a part
of training.

In the basic algorithm we try to improve the error function in the steep-
est direction — negative of the gradient. We hope that after finding the
minimum, the error gradient will vanish and we will stop. Unfortunately
there is a risk to get stuck in a local minima or to step over the real minima
and search elsewhere. Various improvements of the basic backpropagation
algorithm deal with these problems.

This and other gradient methods form a very broad and perhaps the
most important class of numerical optimization methods. Four basic groups
of them are: the steepest descent, the conjugate gradient, quasi-Newton and
Newton methods.

Newton optimization method is computationally the most complex, how-
ever the most efficient with much higher convergence rate than other gra-
dient methods. It uses the second partial derivatives. But, as Newton al-
gorithm does not guarantee convergence if the initial values of the network
parameters are relatively poor, it is usually used in a slightly modified form.
Depending on performed modifications various, so called Newton-type, algo-
rithms are obtained. The most often used quasi-Newton-type algorithm is
the Levenberg-Marquardt algorithm.

7

CHAPTER 2. PERCEPTRON NETWORK LEARNING 8

Further I will describe the basic gradient descent and two advanced al-
gorithms: one of the conjugate gradient family and the other a Levenberg-
Marquardt algorithm modification.

2.1 Weights initialization

Initial weights should be our first guess of how the network should look.
But usually we use some simple method. We can set them to random small
numbers, e.g. from [−1; +1] or in a more sophisticated way about 1/

√|j←|,
where |j←| is the number of neurons connected to j [2, p. 262].

Nguyen and Widrow proposed a method for selecting the initial weights
so that they are distributed over all the space [14]. The weights are set for
each neuron this way: Suppose all neuron inputs have average 0 and standard
deviation 1 and the transfer function has the active region [−1; +1]. That
means for values outside the active region the result will be almost 1 or almost
−1. For example for the logical sigmoid function inputs from [−3; +3] are in
the interval [0.05; 0.95] hence [−3; +3] may be considered the active region.
Set

W ′ = κ p
√

m (2.1)

where κ is the overlapping factor usually set to 0.7, m is count of neurons
on the same level and p is count of neurons on previous level or inputs.

Prepare p random numbers ai ∈ [−1; +1]. The weights on connections
coming to our neuron are normalized by the norm of the vector a.

wi = W ′ ai

|a| (2.2)

The bias weight is chosen randomly from [−1−w1; 1+w1]. If the neuron
inputs or the transfer function active region are distributed over another
interval, transform the formulas appropriately.

2.2 Error function

An error measure E(w) needs to be defined as a function of the weight vector
w of the network. The most common one is the sum-squared error (SSE)

Eq(w) =
1

2

∑
j∈Y

(oq
j − dq

j)
2 (2.3)

CHAPTER 2. PERCEPTRON NETWORK LEARNING 9

ESSE(w) =

p−1∑
q=0

Eq(w) =
1

2

p−1∑
q=0

∑
j∈Y

(oq
j − dq

j)
2, (2.4)

where oj means output calculated by the network, dj the desired output,
Y the set of output neurons. It is useful to normalize the error function by
the count of training rows — a root mean square error is

ERMS(w) =
1

p

p−1∑
q=0

Eq(w). (2.5)

We can try to force the “useless” weights to become zero. This can be
done by adding a penalty term to the error function, e.g.

E = ESSE +
b

2

∑
i∈j←

w2
ij (2.6)

This is equivalent to having a weight decay term in the steepest gradient
descent algorithm (see p. 11)

∆wij = −α
∂E

∂wij

+ bwij (2.7)

The decay rate b is initialized with zero and then gradually increased to
some value. This decay term will pull the weights to zero values. Only those
constantly modified by errors coming form the patterns i.e. only the essential
weights will “survive”.

2.3 Computing gradient — backpropagation

The function computed by the network is very difficult and it is too expensive
to compute the error gradient directly. But it is easy to get it for the output
neurons. And having the value for all the neurons to which a particular
neuron is connected, we can compute the error function partial derivative for
that neuron. This way we backpropagate it from the outputs to the inputs.

Let us index the neurons over all the layers to simplify the description.
The inputs have indexes 0, . . . , n0 − 1, neurons in i-th layer ni−1, . . . , ni − 1,
where n0 is the input count, ni − ni−1 is the count of neurons in i-th layer
and L the layer count. Let us consider bias as a neuron with index −1, with
a constant output 1. Let us denote j← the set of all the neurons, which are
connected to j and j→ all the neurons, to which is j connected.

The weights form a vector w = (wij|i ∈ −1, . . . , nL−1 − 1, j ∈ i→), where
wij is the weight of the connection between neurons i and j.

CHAPTER 2. PERCEPTRON NETWORK LEARNING 10

The training data set is T = {(xq,dq) | q = 0, . . ., p − 1}, where xq are
inputs and dq desired outputs. The set of input neurons is X and the set
of output neurons is Y . Outputs computed by the network for the training
example q are oq, where oq

j = fj(n
q
j), fj is the transfer function for j ∈ Y

and nq
j =

∑
r∈j← aq

rwrj.
At the start of the training process we need to guess initial weights —

see p. 8. Using the chain rule, the gradient may be expressed as

∂Eq

∂wij

=
∂Eq

∂aj

∂aj

∂nj

∂nj

∂wij

, (2.8)

where
∂nj

∂wij

= ai.

The partial derivative of the transfer function
∂aj

∂nj
is 1 for the linear func-

tion. For the logical sigmoid it is

∂aj

∂nj

=
λje

−λjnj

(1 + e−λjnj)2
= λjaj(1 − aj) (2.9)

and for the hyperbolic tangent sigmoid it is

∂aj

∂nj

= 1 − a2
j (2.10)

We need to count the last partial derivative δq
j = ∂Eq

∂aj
. Here we use the

backpropagation strategy. For an output neuron j ∈ Y we may directly derive
the error function:

δq
j =

∂Eq

∂aj

=
∂aj

∂nj

(oq
j − dq

j) for j ∈ Y. (2.11)

For a hidden neuron we can use the chain rule again:

δq
j =

∂Eq

∂aj

=
∑
r∈j→

∂Eq

∂ar

∂ar

∂nr

∂nr

∂aj

=
∂aq

j

∂nj

∑
r∈j→

δq
rwrj for j /∈ Y (2.12)

This way we have transformed the computation to the neurons to which
the neuron j is connected and the values of which we already know, because
we move from the output layer to the input one. This method is correct when
the network is acyclic. The backpropagation is summarized as the algorithm
1.

There are two different strategies of the weights update. In the batch
approach first the error for all the training examples is counted and only

CHAPTER 2. PERCEPTRON NETWORK LEARNING 11

Algorithm 1: Backpropagation

initialize the weights (see p. 8)
for all training inputs xq

apply xq to the input layer
propagate xq forward to the output layer, using eq. 1.1
calculate error Eq(w) according to eq. 2.3
compute the δ’s of the output layer as in eq. 2.11
compute the δ’s of the preceding layers, by backpropagating the

δ’s backward as in eq. 2.12

than (at the end of an epoch) the weights are changed. In the incremental
approach the examples are presented usually in a random order and the
weights are changed after each training example.

The simplest method called steepest gradient descent changes the weights
at every epoch proportionally to the negative of the gradient of E(w),

∆wq
ij = −η

∂Eq

∂wij

(2.13)

∆wij = −η
∂E

∂wij

=

p−1∑
q=0

∆wq
ij, (2.14)

where η is a small positive number 0 < η < 1 called learning rate. The
learning process is extremely sensible to the learning rate. If a too big one
is used, it misses the error function minimum and never converges. If a too
small one is used, the training lasts too long.

There are many improvements to this basic method, like the momentum
term or an automatical learning rate adjustment. I did not implement any
of them because other training methods described in this thesis are much
better even with all the improvements.

2.4 Weight perturbation

An alternative numerical approach for computing the derivatives of the error
function is to use finite differences [2, p. 147]. This can be done by perturbing
each weight in turn, and approximating the derivatives

∂En

∂wij

=
En(wij + ε) − En(wij)

ε
+ O(ε), (2.15)

CHAPTER 2. PERCEPTRON NETWORK LEARNING 12

where ε � 1 is a small number, e.g. 0.00001. This method is computationally
very expensive — we have to run the network on all training data for each
weight. The main usage is to verify the correctness of the backpropagation
algorithm, which is essential to the learning techniques. The weights pertur-
bation technique is extremely easy both to understand and to implement.

A big improvement in the terms of computing time to the weight pertur-
bation may be done by the node perturbation [2]. Remember the equation
2.8

∂En

∂wij

=
∂En

∂aj

∂aj

∂nj

∂nj

∂wij

.

We can perturb only the neuron activations aj

∂En

∂aj

=
En(aj + ε) − En(aj − ε)

2ε
+ O(ε) (2.16)

and count the remaining two derivatives
∂aj

∂nj
and

∂nj

∂wij
directly, which is easy.

Here we need to run the network on all the training patterns for each neuron,
which is much less than the number of weights. However it is always much
slower than the backpropagation, which is run only twice on the training
patterns — one forward and one backward run. The node perturbation is a
bit more difficult than the weight perturbation and therefore less suitable for
verifying the backpropagation.

2.5 Stable dynamic parameter adaptation

Rüger [18] proposes a request for minimization: asymptotic stability, i.e. en-
suring that the performance of the parameters does not decrease at the end
of learning. This stability criterion allows for greedy steps in the initial phase
of learning, although the error does not decrease at every step.

He proposes a class of stable algorithms and proves the asymptotic conver-
gence for them. What is more, he shows these algorithms provide a significant
improvement in the speed of the training process.

The inspiration of this algorithms comes from Salomon [16, 17], who
proves the setting of a new parameter ζ (see below) is uncritical: all values
work, especially sensible ones being those between 1.2 and 2.1.

Rüger’s definition says [18, p. 3]:
“Let E : R

n → R be an error function of a neural net with random weight
vector w0 ∈ R

n. Let ζ > 1, η0 > 0, 0 < c ≤ 1, and 0 < a ≤ 1 ≤ b. At step t of
the algorithm, choose a vector gt restricted only by the conditions

gt∇E(wt)

‖gt‖‖∇E(wt)‖ ≥ c (2.17)

CHAPTER 2. PERCEPTRON NETWORK LEARNING 13

and that it either holds for all t that 1/‖gt‖ ∈ [a; b] or that it holds for all
t that ‖∇E(wt)‖/‖gt‖ ∈ [a; b], i.e., the vectors gt have a minimal positive
projection onto the gradient and either have a uniformly bounded length or
are uniformly bounded by the length of the gradient. Note that this is always
possible by choosing gt as the gradient or the normalized gradient.

Let e : η
→ E(wt − ηgt) denote a one-dimensional error function given
by E, wt and gt. Repeat (until the gradient vanishes or an upper limit of t or
a lower limit Emin of E is reached) the iteration wt+1 = wt − ηt+1g

t with:

ηt+1 =

η∗ :=
ηtζ/2

1 +
e(ηtζ) − e(0)

ηtζgt∇E(wt)

if e(0) < e(ηtζ)

ηt/ζ if e(ηt/ζ) ≤ e(ηtζ) ≤ e(0)
ηtζ otherwise

(2.18)

The first case for ηt+1 is a stabilizing term η∗, which definitely decreases
the error when the error surface is quadratic, i.e., near a minimum. η∗ is
put into effect when the error e(ηtζ), which would occur in the next step
if ηt+1 = ηtζ was chosen, exceeds the error e(0) produced by the present
weight vector wt. By construction, η∗ results in a value less than ηtζ/2 if
e(0) < e(ηtζ); hence, given ζ < 2, the learning rate is decreased as expected,
no matter what E looks like. Typically (if the values for ζ are not extremely
high) the other two cases apply, where ηtζ and ηt/ζ compete for a lower error.

Note that, instead of gradient descent, this class of algorithms proposes
a gt descent, and the vectors gt may differ from the gradient. A particular
algorithm is given by a specification of how to choose gt.”

Rüger suggests to incorporate the Polak-Ribiere rule,

dt+1 = ∇E(wt+1) + αβdt, (2.19)

for conjugate directions with d0 = ∇E(w0), α = 1 (by choosing α = 0, one
gets an algorithm similar to the Salomon’s one), and

β =
(∇E(wt+1) −∇E(wt))T∇E(wt+1)

‖∇E(wt)‖2
(2.20)

to propose vectors gt := dt/‖dt‖. One should reset the direction dt after each
n (the number of weights) updates to the gradient direction. Another reason
for resetting the direction arises when gt does not have the minimal positive
projection c onto the normalized gradient. The method is summarized as the
algorithm 2.

CHAPTER 2. PERCEPTRON NETWORK LEARNING 14

Algorithm 2: Stable conjugate-gradient descent

set ζ ∈ [1.2; 2.1], η0 > 0, c ∈ (0; 1]
set α = 1 (or α = 0 to obtain an algorithm very similar to Salomon’s)
t = 0
while goal not achieved (see p. 24)

calculate ∇E(wt) by standard error backpropagation
if t ≡ 0 (mod n) (n means number of weights) then

dt = ∇E(wt)
else

calculate β as in eq. 2.20
dt = ∇E(wt) + αβdt−1

if gt = dt/‖dt‖ does not satisfy the eq. 2.17 then
dt = ∇E(wt)

store the weights wt

calculate e(x) = E(wt − xgt) at the points x = 0, x = ηt−1ζ, x =
ηt−1/ζ

choose ηt by eq. 2.18
change the weights wt = wt−1 − ηtd

t/‖dt‖
t = t + 1

2.6 Modified Levenberg-Marquardt

Steepest descent learning algorithms are based on linear approximation of
the performance function, Newton algorithm on its quadratic approximation
[14].

Let us rewrite the performance (error) function as

E(w) =
1

2

p−1∑
q=0

(eq)T eq =
1

2
eT e, (2.21)

where eq = eq(w) is the error vector for the q-th data pair from the data set
T = {(xq,dq) | q = 0, . . . , p − 1} (we sometimes do not write the parameter
w), eq

i (w) = dq
i − oq

i (w), oq is the network output, e is the error vector for
the whole data set with dimensions n(e) = |Y ||T |, Y is the set of output
neurons.

Newton algorithm for minimization of the performance function E(w) is

wk+1 = wk − H−1∇E(wk), (2.22)

CHAPTER 2. PERCEPTRON NETWORK LEARNING 15

where k is the epoch number, H(w) = ∇2E(w) is the Hessian matrix of
second derivatives and ∇E(w) is the gradient of the performance (error)
function. If the performance function is defined by eq. 2.21 it can be written:

∇E(w) = JT (w) e(w), (2.23)

H = ∇2E = JT J +

n(e)∑
i=1

ei(w)∇2ei(w), (2.24)

where J(w) is the Jacobian matrix of first derivatives, which can be easy
computed by backpropagation.

J(w) =
∂e(w)

∂w
=

∂e1(w)

∂w1

. . .
∂e1(w)

∂wn(w)
...

. . .
...

∂en(e)(w)

∂w1

. . .
∂en(e)(w)

∂wn(w)

 , (2.25)

The summation element in equation 2.24 may be costly to compute and
it will be close to zero when the output error becomes small. If it is neglected
Gauss-Newton algorithm is obtained

wk+1 = wk − [
JT (wk)J(wk)

]−1 ∇E(wk) (2.26)

Even though this expression is ensured to be positive semidefinite [14],
it may be singular or close to singular. This is the case, for example, if the
neural network is overparametrized or the data are not informative enough.
Various ways to overcome this problem exist and are known as regularization
techniques. One of them is the Levenberg modification

wk+1 = wk − [
JT (wk)J(wk) + µkI

]−1 ∇E(wk) (2.27)

where µ is the regularization parameter. Bishop says [2, p. 292]: “For very
small values of the parameter µ we recover the Newton formula, while for
large values of µ we recover standard gradient descent.”

Marquardt developed a very efficient, the most often used procedure for
adjusting the parameter µ. In the k-th epoch an optimal value µk is deter-
mined by an iterative procedure (Algorithm 3).

The adjustment of the regularization parameter µ starts by multiplying
with a decreasing factor µd < 1. If it results in an increase in the performance
function, µ is multiplied by an increasing factor µi > 1 as many times as
necessary. Marquardt suggested µd = 0.1, µi = 10 and µ0 = 0.001.

CHAPTER 2. PERCEPTRON NETWORK LEARNING 16

Algorithm 3: Levenberg-Marquardt

µk = µk−1µd

calculate new values wk+1 by eq. 2.27, E(wk+1) by eq. 2.4
while E(wk+1) ≥ E(wk) do

µk = µkµi

calculate new values wk+1, E(wk+1)

Algorithm 4: Modified Levenberg-Marquardt

if E(wk) < (1 − h)E(wk−1) then
µk = µdµ

k−1

Emin = E(wk)
else if E(wk) ≤ (1 + h)E(wk−1) or E(wk) ≥ Emin then

µk = µk−1

else
µk = µiµ

k−1

Another variant of the Levenberg-Marquardt algorithm is proposed in
[14]. It differs in the calculation procedure of µ, which is a simple, one step
procedure (algorithm 4).

The algorithm convergence is ensured if µdµi > 1. The parameter h cares
about decreasing the oscillations of the performance function near its min-
imum. The authors used values µd = 0.6, µi = 2, µ0 = 0.001, h = 0.005.
According to them, the modification shows better performance regarding
probability of escape from a local minima thanks to its oscillations. Examples
of different learning tasks are presented, which show the modified algorithm
is faster.

2.7 Methods comparison

None of the methods is the best one, for different tasks different methods
have best results [3, p. 5-49]. The Levenberg-Marquardt (LM) algorithm is
excellent on function approximation problems with smaller networks with a
few hundreds of weights, especially when we need a big accuracy. However,
as the number of weights increases, its advantages decrease. It needs lots of
memory for the matrix operations. Special methods may decrease storage

CHAPTER 2. PERCEPTRON NETWORK LEARNING 17

requirements by the cost of growing time requirements. The modified LM
described on p. 14 should have similar, even better, results.

Conjugate gradient methods perform well over a variety of problems. They
are almost as fast as LM at function approximation and even faster on bigger
networks. They are the best at pattern recognition and their performance
does not degrade much when the error is reduced (remember the asymptotic
stability request, see p. 12).

2.8 Generalization improvement

We have never a totally correct data, at least because computers work only
with discrete numbers. Often there are some smaller or bigger errors in the
data. When we have a too big network and learn it too long, it learns the
examples so accurately that it learns all the errors. This problem is termed
overfitting.

To tackle the problem of overfitting we can cut a part of the training data
to form an evaluation set. These data can not be used as training examples,
thus we can use this approach only when there are enough data. In the
process of learning we calculate the error on the evaluation set after each
epoch. When it increases, it indicates that the network has started to learn
the examples’ errors. At this point we stop the training — this is called early
stopping.

In practice, we wait a given number of epochs, whether the error decreases
or not, and remember the best weights configuration on which the error for
the evaluation set was the least.

If the data is organized into series (see p. 20), we must assign whole series
to the training or evaluation data, we can not split them.

Another possibility is to add noise to each training input pattern — a new
random vector is added before the input feeds the network. For the network
it becomes more and more difficult to fit the data precisely. This method is
simple and computationally undemanding [12].

A similar result may be achieved by the iterative training approach (as
opposed to the batch training, see p. 10) with random train patterns order.

2.9 Recurrent networks

Working with the data organized into series (see p. 20) involves using a recur-
rent network architecture and appropriate learning algorithms. The recurrent
connections are fed from neuron outputs of the previous data row. For the

CHAPTER 2. PERCEPTRON NETWORK LEARNING 18

first data row in a series they are fed with some filler symbols (usually 0).
One of the training algorithms looks at the recurrent network as a big

unfolded network formed by a series of networks where the recurrent connec-
tions form inputs to appropriate neurons in the next network. This approach
involves a small change in the backpropagation algorithm. We run the net-
work successively for all the rows in a series and store the neuron outputs of
all the hidden and output units for each row. We feed the recurrent connec-
tions with outputs stored from the previous row. The error backpropagation
starts from the last row in the series and goes back through the unfolded
network. In each step we store the error function partial derivatives coming
from the recurrent connections and add them in the next step (which runs
on the previous row). Thus the neuron output becomes

aq
i = fi

∑

j∈ifw←

wjia
q
j +

∑
j∈irec←

wjia
q−1
j

 , (2.28)

where ifw← is the set of neurons forward-connected to j, irec← is the set of
neurons with recurrent connections to j. The outputs a−1

i are set to a filler
value, usually 0.

The equation 2.11 for the output neurons remains the same. The equation
2.12 for the hidden neurons

δq
j =

∂Eq

∂aj

=
∂aq

j

∂nj

∑
r∈j→

δq
rwrj for j /∈ Y (2.29)

splits into two equations — one calculates the recurrent connections gradient
and stores it to be used in the next step

δq store
j =

∂aq−1
j

∂nj

∑
r∈j→rec

δq
rwrj for j /∈ Y, (2.30)

the other uses the stored gradient and adds the forward connections gradient
to it

δq
j = δq+1 store

j +
∂aq

j

∂nj

∑
r∈j→fw

δq
rwrj for j /∈ Y. (2.31)

The recurrent error backpropagation is summarized in algorithm 5 (see
p. 9 for symbols details). Here ns means the length of series s.

CHAPTER 2. PERCEPTRON NETWORK LEARNING 19

Algorithm 5: Recurrent backpropagation

initialize the weights (see p. 8)
set the neuron outputs a−1

i = 0
for all series xs

for all training inputs xq
s in the series, q = 0, . . . , ns − 1

apply xq to the input layer
propagate xq forward to the output layer, using eq. 2.28

for all training inputs xq
s in the series, q = ns − 1, . . . , 0

calculate error Eq(w) according to eq. 2.3
compute the δ’s of the output layer as in eq. 2.11
compute the δ’s of the preceding layers, by backpropagating

the δ’s backward as in eq. 2.30 and 2.31

Chapter 3

Training data

We can look on the training data as on a table with rows containing the
training examples — inputs and their desired outputs. Each column in this
table represents one input or output of all the training examples.

Sometimes we need to work with the data organized into series. My ap-
proach to form prosody by syllables looks on sentences as series of syllables.
This allows two interesting possibilities: We can use a window technique and
a recurrent network which uses previous results to compute the outputs (see
p. 17).

When working with series we expect that the neighbour data have some
relation to the current ones. The window technique takes the column value
from a given number of left and right neighbours. For example one input tells
whether a syllable is the first one in a word. Looking at the neighbours we
know whether the previous or the next syllable was the first in some word.
We have to fill the inputs with some filler symbols at the ends of the series
(e.g. for the right neighbour of the last syllable).

Table 3.1 shows an example of two series of three rows with one column.
After applying a window 1 to the left and 2 to the right and a filler symbol
0, the network inputs will be as in table 3.2.

In practice it is often advantageous to pre-process the data before feeding
it to the network. Usually we want to transform them into a small range, e.g.
[−1; +1] or [−3; +3]. The simplest way is to find the minimum and maximum
xmin and xmax of all the data in a column and apply

y =
rmax − rmin

xmax − xmin

(x + xmin) + rmin, (3.1)

where [rmin; rmax] is the desired range and y the transformed data x.
A more sophisticated way called input normalization finds the average µ

20

CHAPTER 3. TRAINING DATA 21

Table 3.1: Window example — source data

without the window col 1
series 1, row 1 2
series 1, row 2 1
series 1, row 3 2
series 2, row 1 1.5
series 2, row 2 3
series 2, row 3 2

Table 3.2: Window example — result

with the window l 1 col 1 r 1 r 2
series 1, row 1 0 2 1 2
series 1, row 2 2 1 2 0
series 1, row 3 1 2 0 0
series 2, row 1 0 1.5 3 2
series 2, row 2 1.5 3 2 0
series 2, row 3 3 2 0 0

and standard deviation σ of the data

µ =
1

N

N∑
n=1

xn (3.2)

σ =

√√√√ 1

N − 1

N∑
n=1

(xn − µ)2, (3.3)

where N is the number of data rows, and transforms them to

y =
(x − µ)σr

σ
+ µr (3.4)

where µr and σr are the desired average and standard deviation resp., usually
0 and 1 resp.

The perceptron construction allows it to transform any input in the same
way: the input is multiplied by the weight and added to a bias. But using

CHAPTER 3. TRAINING DATA 22

Table 3.3: Multicategories

value red green blue
green 0 1 0

red, green 1 1 0
yellow 0 0 0
blue 0 0 1

preprocessed data, the weights may remain small and the network training
properties are better.

Not always are the data numerical, sometimes we work with categories
like colors or sex. There are several ways to cope with them. We may assign a
fraction of the destination range to each of them (0, 1

n
, 2

n
, . . .), which will not

be very useful. Or we can assign an order and code the order with a binary
number, using log2 n binary (0/1) inputs. We can fill one input with each
category, than only 1 of the n inputs will have the value 1 and the rest 0. The
last approach is especially useful when working with multi-categories, where
every value may belong to several categories. When we meet an unexpected
category, it feeds all the inputs with zeros. The table 3.3 shows an example
of three inputs created for a category field with possible values red, green
and blue.

Chapter 4

Training process

The network training process is very time consuming. Usually one has to
try different sets of learning parameters and to look for some good ones.
Every trial involves running the network training many times to try different
weights initializations. All the configurable items like network architecture
or training parameters are called degrees of freedom. The more degrees of
freedom, the harder it becomes to try all their meaningful combinations.
This chapter discusses the main ones: the hidden layer sizes, the input count,
the training parameters and the learning goal.

It is difficult to set appropriate layer sizes. The smaller the network is
the faster it runs and the better are its generalization abilities. But too
small networks do not have enough parameters (weights, biases) to learn the
given problem. There are several constructive algorithms which add neurons
to the network steadily until it is big enough or which prune unnecessary
connections and neurons, like cascade correlations [13].

I have tried a different approach — the training process starts with a static
small network first, than it takes a bigger one and so on. When the network
fitness does not improve any more, the smallest network was found. This
involves a fitness function which runs for several initial weights configurations
and takes the one with the smallest error.

The input count has a big influence on the network size and thus training
time. Although in some cases the inputs are fixed, we may change them in
some way. We may feed different number of inputs with categorial data, see
p. 22. We may use a window of different sizes, see p. 20. And we can stop
using some column at all.

The basic steepest gradient descent method (see p. 11) has its learning
rate, its every improvement comes with another parameters. The stable con-
jugate gradient method (p. 12) and modified Levenberg-Marquardt (p. 14)
have several parameters too. The difference is between the importance of

23

CHAPTER 4. TRAINING PROCESS 24

each parameter settings. Usually one parameter is driven by another one
with smaller sensibility. Indeed, there is no need to change e.g. the stable
conjugate gradient parameters at all. Although you can do it if you wish to
experiment.

The particular network training is stopped when any of the conditions of
the learning goal is filled:

• Error reached the desired value.

• Error has not improved for a given number of rounds. Usually we com-
pare the error with the best one achieved and request some ε improve-
ment. The number of rounds is important because if it is too small, the
training will stop earlier than necessary, but when it is too big, we will
waste time.

If we are using an evaluation data set, the error on the evaluation set
is compared instead of the training set error.

• Time used for the training is too long.

• Too many epochs passed.

I did use only the time and bad error improvement parameters, the others
were set to values which were never achieved. The evaluation data set does
help to avoid using them.

Chapter 5

Neural networks modelling
prosody in specific languages

5.1 German

The Swiss TTS system SVOX [19] successfully uses a neural network to model
prosody of indicative sentences.

The authors tried many different structures and the most successful one
is a recurrent 62-20-10-8, i.e. with 62 inputs, 20 neurons in the first hidden
layer, 10 neurons in the second and 8 outputs. The recurrent connections lead
from 10 of the 20 neurons in the first hidden layer back to all the neurons in
the first hidden layer.

The outputs are 8 F0 (fundamental frequency) values. Each syllable is
segmented into two demi-syllables. The middle for the training examples is
set at the earliest intensity maximum. The two demi-syllables are split into
two parts of equal length. For each of the resulting four segments the F0

contour is approximated by a linear regression line, and the F0 values at the
line ends are the outputs.

The inputs are formed by two streams on which the window technique
(see p. 20) is applied with different window sizes for each stream.

The first stream is formed by 5 bits (1/0 inputs). The coding is as follows:

• The first bit indicates an accent.

• The second bit indicates a phrase boundary with a non-terminal into-
nation (usually all but the last one in an utterance).

• The three remaining bits describe the phrase boundaries or the accent
type.

25

CHAPTER 5. NETWORKS IN SPECIFIC LANGUAGES 26

• End of utterance is denoted (0,0,1,1,1).

• Word boundary is denoted (0,1,1,1,1).

Several accent types were considered [19, p. 175]: “pitch accents (accents
associated with a major pitch movement), non-pitch accents on the main
stress position in words, and secondary or tertiary word accents. All other
syllables were judged unaccented.”

The training corpus was manually phonologically transcribed. The phrase
boundaries (start, end and pauses) are added to the transcription.

The second stream is formed by 4 bits:

• ShortV = 0 if the syllable contains a diphthong or a long vowel, 1
otherwise

• HighV = 1 if the syllable nucleus is a vowel with a generally high F0,
0 otherwise

• LUC = 0 if no consonant occurs to the left of the syllable nucleus or
the consonant to the left of the nucleus is voiced and quasi-stationary
(the list of all such consonants is included in [19]), 1 otherwise

• RUC — like LUC, but for the consonant to the right

The streams are joined together. For phrase boundary symbols in the first
stream, the values in the second are set all to 0. The window is 3 left and 6
right symbols on the first stream and 1 left and 1 right on the second. The
window filler symbols are zeros.

Thus the network has (3 + 1 + 6) ∗ 5 = 50 inputs from the first stream
and (1 + 1 + 1) ∗ 4 = 12 from the second, which is 62 together.

The algorithm used to train this network was steepest gradient descent
(see p. 11) with recurrent backpropagation (see p. 17). The author used a
learning rate of 0.02.

An example of the input streams: The SVOX-specific phonological rep-
resentation of “Morgen kommt ein Gewitter” (“tomorrow comes a storm”)
is:

#{0}(P)[1]mqr-g6n#{2}(T)[3]kqmt <a 1n gq-[1]v1tqr#{0},
where (P) resp. (T) is a phrase without resp. with a terminal type intonation,
#{0} and #{2} are the phrase boundaries, [1] and [3] are the accents.

The first stream of symbols will be formed by

#{0} 1 0 #{2} 3 $ 0 $ 0 1 0 #{0},

CHAPTER 5. NETWORKS IN SPECIFIC LANGUAGES 27

Table 5.1: Network input streams

First stream Second stream
symbol inputs ShortV HighV LUC RUC

#{0} 0 1 0 0 1 0 0 0 0
1 Mor 1 0 0 0 1 1 0 0 0
0 gen 1 0 0 0 0 1 0 1 0
#{2} 0 0 0 1 1 0 0 0 0
3 kommt 1 0 0 1 1 1 0 1 0
word boundary 0 1 1 1 1 0 0 0 0
0 ein 1 0 0 1 1 0 0 1 0
word boundary 0 1 1 1 1 0 0 0 0
0 Ge 1 0 0 0 0 1 0 1 0
1 wit 1 0 0 0 1 1 1 0 0
0 ter 1 0 0 0 0 1 0 1 0
end of utterance 0 0 1 1 1 0 0 0 0

where the numbers stand for syllable accents and $ divides words. The re-
sulting two streams are in table 5.1.

The author [19, p. 186] says about the network quality: ”The difficulty of
choosing a good network for F0 prediction lies in the fact that the simple mean
square distance measure between the natural and predicted F0 contours is
not a good indicator of the perceived naturalness of the generated contours.
The networks had to be judged mainly by listening to the synthesized F0

contours.”
The author prepared some experiments in which the subjects had to in-

dicate whether they listen to a natural or a TTS formed sentence. It seems
that about 30% of the sentences sounded as natural as to be confused with
natural contours.

The SVOX group has other speech corpus data ready allowing to train
a network for questions and exclamations and a French speech corpus [15].
But the results with indicative sentences are still the best.

5.2 Korean

The authors in [11] propose a four-level model for synthesizing fundamental
frequency F0. The resulting F0 is counted as a sum of all the levels. The
paper does not contain enough information, thus I only try to reproduce the

CHAPTER 5. NETWORKS IN SPECIFIC LANGUAGES 28

basic ideas.
The first level is the global tune, a linear declination line y = at+b where

t is normalized by the number of words in a sentence. The parameters a and
b are estimated by applying the least-square method on the training corpus.

The second level is the word pitch bias. It uses a statistical mapping
table based on some 60 grammatical attributes. As there can not be all the
combinations of the 60 attributes in the table, the closest combination is
used.

The third level is the lexical tone and it uses a 2-layer neural network.
The inputs are not well described in the paper.

The fourth level is the syllabic pitch pattern. Korean syllables consist
of CVC, where initial and final C can be deleted. C means a consonant, V
a vowel. In Korean, there exist 18 initial C, 21 V and 7 final C. A table
assigning a pitch pattern to each syllable is used. The pitch is approximated
by two straight lines which intersect at the syllable pitch maximum.

In this approach, the neural network had reportedly very good results.
Its task was as simplified as possible by other statistical approaches.

Part II

Practical part

29

Chapter 6

Development environment

The program created within this thesis has a text-to-speech (TTS) part im-
plemented in the Epos system and a neural networks part implemented in
the Bang 3 system. The TTS part prepares the inputs for the network and
works with its outputs. The neural networks part provides the network train-
ing process. Some of the Bang files are compiled with Epos to run a trained
network.

Both Bang and Epos have some common features. Extensibility and
portability of both is essential. The source code of both is written in some
subset of C++ with minimal platform and operating system dependencies.
Neither of them uses the Standard C++ Library (STL) nor the C++ streams.
Most common C++ compilers on UNIX, Linux and MS Windows systems
may be used for them. Both use the standard GNU autoconf tool to auto-
matically check for system dependencies. Both provide a Microsoft Visual
C++ 6 workspace under MS Windows.

6.1 Epos

The Epos TTS implementation [6, 5] is a highly configurable and flexible
system. All the important options are user configurable without the need of
recompilation. It is language independent, which means there are no source-
level language-specific algorithms, though some features needed for other
languages may be missing.

Epos is based on very general rules working with the internal text struc-
ture representation (see further). The rules are expressed in an explicit way,
which is very useful for research purposes.

Although explicit rules are highly valued, some parts of the TTS pro-
cess are not researched enough yet — especially prosody achieves better

30

CHAPTER 6. DEVELOPMENT ENVIRONMENT 31

Table 6.1: Unit levels

Level name written TSR semantics spoken TSR semantics
text the whole text the whole text
sent sentence construction terminated utterance
colon sentence/clause/colon intonational unit
word word stress unit
syll word syllable

phone letter sound
diphone diphone

results with implicit trainable models like neural networks or generalized lin-
ear model [19, p. 148]. Epos supports combinations of rule-based and corpus-
based methods like dictionaries with tags or neural networks [7, p. 31]. In its
recent version it has some very limited support for neural networks. Within
this thesis a much more flexible and powerful one was developed. Networks
training is left outside Epos in the Bang system, but the interface is the same,
even with the same source files, to ensure future compatibility.

The text to be spoken is internally stored in a format useful for application
of transformational rules. This format is well suitable for neural network
inputs forming too. Hanika says [5]:

“Every phonetic unit (or an approximation of one) is represented by a
single node in the structure. The nodes are organized into layers correspond-
ing to linguistic levels of description, such that a unit of level n can list its
immediate constituents, that is units of level n − 1. Every layer also has a
symbolic name, which is used to refer to it in the rules.”

The number and symbolic names of individual levels can be specified in
the configuration files. They are currently defined [5] as in table 6.1. The level
names do not have exactly the same meaning as in the common language.
For example a word is a stress unit which in Czech may be formed by two
words, e.g. “do kina” is one word because the preposition “do” is joined with
the word “kina”.

Recent stable Epos version 2.4 accompanies each segment in the TSR with
values for all the prosodic parameters — linear interpolation is used between
adjacent segments. This format limits prosody modelling to just one pitch
point per segment and fixes the location of it, which is rather restrictive.
Other TTS projects [11, 19] try to use more pitch points for each syllable to
use all the information from the training corpus.

The prosody values — fundamental frequency F0 or pitch, intensity and

CHAPTER 6. DEVELOPMENT ENVIRONMENT 32

duration — are all set as percentage of default values. Setting default F0

to 100 Hz allows to use the values like it were frequencies in Hertz. The
three values influence each other, for example a longer unit seems to be
more intensive. There are some difficulties with processing the sound signal
when the values differ much from the defaults. In the future Epos versions
duration will be perhaps set in milliseconds, which will simplify the training
data outputs creation. Now only F0 seems ready to be formed by a network.

The Epos system does not use any CVS system (see p. 59), the changes
are maintained by Jǐŕı Hanika. It has a rather thorough user guide and some
development guide [5].

A client called say communicates with the server by a text-to-speech
control protocol [5]. All the text not parsed as options is converted to speech.
A graphical user interface WinSay is available under MS Windows.

6.2 Bang 3

The distributed multi-agent system for building hybrid artificial intelligence
models Bang 3, created at the Institute of Computer Science, Czech Academy
of Science, Prague, is a follower of the Bang 2 and Bang 1 systems. It is
a young project started at autumn 2001. The environment allows to run
independent agents who communicate with each other. The agents may run
on several computers in a cluster. Bang 3 will allow running the agents all
in one process, with no communication overhead, or running each one in its
own process, for easy debugging. In the current version only the one process
mode is implemented.

To allow to write the code in an intelligible manner and at the same time
include such powerful features like choosing a binary or textual data stream
at run-time or allowing a transparent agent distribution over computer net-
works, Bang 3 uses heavily the C preprocessor and even a Perl script for the
agents source files.

The agents communicate in an XML-derived language. They also can
agree on a binary mode communication, but this is only a speed optimization
— it always has its XML counterpart. The implementation decides when to
use the binary communication. Each agent has its triggers which are evoked
by matching events.

The main requirement for the agents is they support co-operative mul-
titasking. When running a long lasting computation, they must split it into
short iterations, call each iteration from the idle trigger and return control
back to the Bang system.

The user interface is very limited at the moment. The user communicates

CHAPTER 6. DEVELOPMENT ENVIRONMENT 33

with the Text Console agent. When a key is pressed, the Text Console shows
a prompt >> and expects a name of an agent followed by a message to be
sent. For example:
>> Miluska request read file CString=nn.txt

This example shows a message in a simplified form: the <, > and / tags sym-
bols are skipped, the closing tags and the attribute name "value" also. Every
message not beginning with < is regarded as the simplified form. Every tag is
placed as a subtag of the preceding one and the values following an equation
sign = are quoted and added as a value attribute. The whole message is:
Miluska <request><read><file><CString value="nn.txt"/>

</file></read></request>

In the agents description in the chapter 7 all messages are written in this
simplified form.

The Text Console agent understands also two special commands: halt
terminates the Bang system and list lists all the agents available.

The Bang 3 system has very few documentation of any kind. The Fre-
quently Asked Questions are answered in the doc directory in the source
distribution. Some development tips are displayed on the web pages of Pavel
Krušina. In some aspects the documentation of the previous Bang 2 and
Bang 1 systems included with the sources may be useful. Bang uses the
sourceforge Internet project with its CVS [9] to maintain the source code.

Chapter 7

Bang agents

In this chapter you will learn about the three agents concerned with neural
networks — PerceptronNN, TrainingData and TrainingProcess from the
user point of view. Each of them has an XML-like user-editable configuration
file which determines its function and a set of messages which it understands.

7.1 Configuration grammar

The configuration files contain XML tags. I do not use a standard DTD to
explain the configuration syntax for two reasons. First the DTD does not
describe the value types (number / string / boolean) and second I use two
special tags default and include, see further.

The only attribute used in the configuration is value. All the variables
are set by it. The configuration description in this thesis is simplified by
omitting the <, > and / tags symbols, the closing tags and the attribute
name "value". The tag hierarchy is shown by left indentation. For example

file

streams

stream="$filename"

means
<file><streams><stream value="$filename"/></streams></file>.
Variables beginning with $ are used in the description when a value needs

a special description. The common ones are:

$filename file name with a path relative to the configuration file
$filename with percent like filename, but contains one % character

which is replaced with a number to create a file name which does not

34

CHAPTER 7. BANG AGENTS 35

Table 7.1: Resolving the default tag

XML with default will be resolved into

columns columns

default column

use="input" use="input"

window window

left="2" left="2"

right="2" right="2"

column column

column use="output"

use="output" window

window left="1"

left="1" right="2"

yet exist. When there is no %, the number is added at the end of the file
name

$positive a positive integer number or 0
$string any string of characters
$float a real number

The optional tags are marked with ?. For string variables this means that
omitting the tag is the same as setting it to an empty string. For numerical
and boolean ("0"|"1") variables it is the same as setting it to 0.

The tags which may be included once or more times are marked with +.
The ones which may be included zero or more times are marked with *. For
example:

?file

streams

+stream="$filename"

means the whole file tag may not appear in the configuration and the
streams tag contains one or more stream subtags.

Two special tags may be used in the configuration files: the tag default

adds its subtags to all the tags on the same hierarchy level. It does not replace
existing subtags but adds all the new ones. An example is given in table 7.1.

The other special tag is include="$filename", which is replaced by the
contents of the respective file.

CHAPTER 7. BANG AGENTS 36

7.2 PerceptronNN agent

This agent provides two modes: in the run-only mode it only creates the
structures needed to read weights and to run the network on given inputs to
calculate outputs. In the training mode it prepares other structures needed
for a chosen learning algorithm and runs that algorithm until any of the
learning goal conditions is reached (see p. 24).

Apart of other training algorithms the network provides the weights per-
turbation method (see p. 11) to verify the correctness of the backpropagation,
which is excellent for the debugging purposes. The weights perturbation is
run after the gradient is calculated by the backpropagation. The agent prints
the difference between this way computed derivatives and the backpropaga-
tion derivatives. The difference should be a very small number ε � 1 because
although the weights perturbation is a numerical method with a limited ac-
curacy, its error is distributed around zero and thus by summing the errors
for all the connections we get a very small number.

The configuration includes connection restrictions. These restrict the for-
ward connections between neurons. The minimal requirement is the network
being acyclic, which is achieved by creating only connections from neuron i
to neuron j, i < j. There are no restrictions for the recurrent connections,
because they use the values from the previous data row. Arbitrary recurrent
connections may be created by the recurrentConnections tags. The neuron
biases are included in the weights vector as the weights of connections from
a fictive neuron −1.

The network architecture description includes further the count of neu-
rons on each layer and the neuron transfer functions. These and the training
and weights initialization algorithms are listed here:

Neuron forward connection restrictions:

layered connections from neurons on layer i to neurons on layer i + 1
none connections from neuron i to neuron j, i < j

Neuron transfer functions:

logsig logical sigmoid f(x) = 1
1+e−x

linear linear function f(x) = x
tansig hyperbolic tangent sigmoid f(x) = 2

1+e−2x − 1

Training algorithms:

gradientDescent fixed step steepest gradient descent, see p. 11. Uses the
parameter learningRate

CHAPTER 7. BANG AGENTS 37

Table 7.2: Perceptron network run-only configuration

perceptronStructure

connectionRestriction="layered"|"none"

trainProcedure="runOnly"

weights

stream="$stream_value"

type="local"|"remote"

encoding="text"

delimiter="$delimiter"

layerTransferFuncs="$transferFuncs"

layerSizes="$layerSizes"

?allRecurrentConnections

+recurrentConnections

start

layer="$positive"

?from="$neuron"

?to="$neuron"

end

layer="$positive"

?from="$neuron"

?to="$neuron"

stableConjugateGradient stable conjugate gradient, see p. 12. Uses the
parameters learningRate, epsilon, zeta, c

modifiedLM modified Levenberg-Marquardt, see p. 14. Uses the param-
eters h, mi, mi i, mi d

LM Levenberg-Marquardt, see p. 14. Uses the parameters mi, mi i, mi d

runOnly no training — the network is in the run-only mode

Weights initialization algorithms:

random random number from [−1/
√|j←|; 1/√|j←|] with normal distri-

bution, where |j←| is the count of all the neurons connected to the neuron
j

nguyen-widrow Nguyen-Widrow initialization as described on p. 8. Not
yet implemented with recurrent networks

The grammar of the PerceptronNN configuration for both modes is in
the tables 7.2 and 7.3. One configuration may contain tags from both. The
variables used there are (see p. 34 for the common variables):

CHAPTER 7. BANG AGENTS 38

Table 7.3: Perceptron network learning mode configuration

perceptronStructure

connectionRestriction="layered"|"none"

trainProcedure="gradientDescent"|"stableConjugateGradient"

|"modifiedLM"|"LM"

?runWeightsPerturbation value="0"|"1"

?weightInitProcedure value="random"|"nguyen-widrow"

layerTransferFuncs="$transferFuncs"

layerSizes="$layerSizes"

?allRecurrentConnections

+recurrentConnections

start

layer="$positive"

?from="$neuron"

?to="$neuron"

end

layer="$positive"

?from="$neuron"

?to="$neuron"

params

learningRate="0.002"

?epsilon="1e-005"

?zeta="1.5"

?c="0.5"

?h="0.005"

?mi="0.001"

?mi_i="2"

?mi_d="0.6"

?dumpWeights="$filename_with_percent"

?dumpWeightsDelimiter="$delimiter"

?dumpAllInterval="$positive"

?dumpAll="$filename_with_percent"

?logErrors="$filename"

CHAPTER 7. BANG AGENTS 39

string $stream value is explained further
string $delimiter string of characters each of which is used as a column

delimiter. You may use "tab" in place of the tabulator character
int $neuron positive numbers mean a neuron index in the given layer

(the 1st neuron index is 0), negative numbers a percent of all the neurons
in the layer

string $layerSizes the layer sizes delimited by -, e.g. "15-8-4-1". The
first and last size are replaced by the input and output counts resp. Thus
"0-8-4-0" means the same

string $transferFuncs the layer transfer functions delimited by -, their
count should be 1 less than the layer sizes count, e.g.
"logsig-logsig-linear"

Tags used in the PerceptronNN configuration:

runWeightsPerturbation should the weights perturbation be run as de-
scribed above?

weights when dumpWeights is empty, the weights are placed locally in
$stream value, otherwise they are placed externally in a file the name
of which is created from dumpWeights and written into $stream value.

recurrentConnections recurrent connections going from start to end

to be created
params for different training algorithms different parameter sets are used

(see p. 36)

The PerceptronNN agent understands these messages important for a Bang 3
user:

request read file CString=$filename reads a configuration file
request join TrainingData CString=$name

joins the TrainingData agent identified by his name. This agent will give
the training data

request run starts the learning
request pause pauses the learning
request continue continues the learning
request end terminates the learning
request info displays information about the state of the learning

7.3 TrainingData agent

This agent reads the data files, examines them, sets filters (see further) and
divides the rows between the training and evaluation sets. He works with

CHAPTER 7. BANG AGENTS 40

Table 7.4: Data splitting

inputs1.txt outputs1.txt

data2.txt

the training data as with a table. The rows of the table contain the training
examples — the inputs and their desired outputs. Each column represents
one input or output of all the training examples.

The data may be split horizontally and / or vertically. You can use more
data files which contain whole rows and are added one after another (verti-
cally) or which have different column subsets of the same data rows (horizon-
tally). This may be useful when you prepare the network outputs in another
way than the network inputs.

Table 7.4 shows an example of data splitting: first 100 rows are in two
files — inputs in inputs1.txt and outputs in outputs1.txt, and next 100
rows are in one file data2.txt.

The input and output columns are processed by filters. A filter takes some
numerical or textual value and translates it into one or more floating point
numbers. Every input column is passed through a filter to form the network
inputs — this is termed data pre-processing. The outputs are post-processed
through a filter to get the desired value. The post-processing is inverse to the
pre-processing. The agent is able to set the filters automatically by examining
the data and finding the category values, the minimum, maximum, average
and standard deviation in each column.

The filter types and the possible translations are listed here:

Filter types:

bool boolean — two different values, e.g. 0 / 1, yes / no
int integer number
float floating point number
category category values, interpreted as text even if numerical
multicategory category values, each row contains any number of them

(0–n) — not yet implemented

Filter translations:

float linearly transforms as in eq. 3.1

y =
rmax − rmin

xmax − xmin

(x + xmin) + rmin,

CHAPTER 7. BANG AGENTS 41

linear normalizes by average and standard deviation as in eq. 3.4

y =
(x − µ)σr

σ
+ µr,

where µ is named avg and σ is named stdev in the configuration file
bools for categories or multicategories only: assigns one boolean 0 / 1

input to each category contained in the training data. The number of
these network inputs equals the number of categories. For categories not
contained in the training data all these inputs will equal 0. The categories
may be listed in the categories tag

none do not translate, use values as they are

The grammar of the TrainingData configuration is in the table 7.5. The
variables used there are (see p. 34 for the common variables):

string $delimiter string of characters each of which is used as a column
delimiter. You may use "tab" in place of the tabulator character. The
row delimiter is the end-of-line

int $range positive numbers mean a row index (the 1st row index is 0),
negative numbers a percent of the row count. When working with series,
a series index or a percent of the series count is meant

string $categories semicolon (;) separated list of categories

Tags used in the TrainingData configuration:

trainingDataFiles files split horizontally (into several file tags) and
vertically (into several stream tags)

examineColumns should the columns be examined to set the filters —
categories, minR, maxR, stdev, avg?

dumpCfg used by the TrainingProcess agent to dump the configuration
after examining the columns

ranges assigns parts of the data to the training and evaluation data sets
columns describes each column usage - as an input, output or not used

at all
window may be used only when the data are organized into series. The

column values of left preceding and right following rows in the same
series will be added to the inputs. When there are no such rows in the
series (e.g. no row is preceding the first one), the empty input is used.
See p. 21 for an example

minR, maxR, avg, stdev the filter settings
series when greater than zero, the data is organized into series
seriesSeparator the series in the data files are separated by rows begin-

ning with the seriesSeparator

CHAPTER 7. BANG AGENTS 42

Table 7.5: Training data configuration

trainingData

?trainingDataFiles

+file

+streams

+stream="$filename"

type="remote"

delimiter="$delimiter"

encoding="text"

?examineColumns="0"|"1"

?dumpCfg="$filename_with_percent"

ranges

+range

type="train"|"eval"

?from="$range"

?to="$range"

?rest="0"|"1"

?random="0"|"1"

columns

+column

use="input"|"output"|"no"

type="bool"|"int"|"float"|"category"

|"multicategory"

translate="float"|"linear"|"bools"|"none"

categories="$categories"

?minR="$float"

?maxR="$float"

?avg="$float"

?stdev="$float"

?window

?left="$positive";

?right="$positive"

?empty="$float"

?series="$positive"

?seriesSeparator="$string"

CHAPTER 7. BANG AGENTS 43

The TrainingData agent understands these messages important for a Bang 3
user:

request read file CString=$filename reads a configuration file and all
data

request info displays information about the number of the data in the
training and evaluation sets

7.4 TrainingProcess agent

The TrainingProcess agent guides the whole process of training. It goes
through a predefined set of batches. Each batch may work with other training
data and perceptron network structure. For each batch the fitness of the
network is calculated by trying several initial weights configurations and
choosing the one with the smallest error. The number of trials is set in
the configuration file.

The training process is able to find the smallest network architecture by
trying growing network architectures. It multiplies the layer sizes in each
step by a given number findSmallest and adds 1 if the layer size does not
change (e.g. when multiplying 1 ∗ 1.4). At each step it computes the fitness
as described above. When the fitness ceases to improve, the batch is finished.

A log file is created which allows to analyse the results. It contains a
header with information about the training and evaluation data size, net-
work architecture and names of files with the particular TrainingData and
PerceptronNN configuration. Under the header there is one row for each net-
work training trial with layer sizes, connection restrictions (see p. 36), best
error achieved on the training and evaluation sets, number of epochs, time
passed, training procedure used, learning goal condition (see p. 24) which
terminated the training, and the neuron transfer functions.

The grammar of the configuration file is in the table 7.6. Tags used there
are:

logName the log file described above
dumpNN the trained network ready to be used is saved into this file with

all its weights and with the training data information
startBatch allows to continue in an interrupted training process. Find

the last batch index value in the log file
learningGoal controls when will be the network training stopped, see

p. 24: if the network error reaches error or if the time passed is longer
than time or if the epochs count is bigger than epochs or if the error has

CHAPTER 7. BANG AGENTS 44

Table 7.6: Training process configuration

trainingProcess

?logName="$filename"

?dumpNN value="$filename_with_percent"

?startBatch value="$positive"

learningGoal

error="$float"

time="$positive"

epochs="$positive"

minErrorImprovement="$float"

badErrorImproveEpochs="$positive"

batches

+batch

perceptronStructure ...

trainingData ...

?findSmallest="$float"

trials="$positive"

?stopOnSuccess="0"|"1"

not improved at least of minErrorImprovement for badErrorImprove-

Epochs epochs
batch contains the whole perceptronStructure and trainingData con-

figurations (which may be placed in external files by the include tag,
see p. 35)

findSmallest if non-zero, the training process tries to find the smallest
network architecture as described above

trials how many times will each network be run with different weights to
find its fitness. If set to 0, no network is ever run

stopOnSuccess should I stop when the desired error value (set in lear-

ningGoal) was reached?

The TrainingProcess agent understands these messages important for a
Bang 3 user:

request read file CString=$filename reads a configuration file
request join TrainingData CString=$name

joins the TrainingData agent identified by his name
request join PerceptronNN CString=$name

joins the PerceptronNN agent identified by her name. This agent will

CHAPTER 7. BANG AGENTS 45

train the neural network and send a message to the TrainingProcess

agent when it is ready
request run starts the training process
request end terminates the training process
request info displays information about the state of the process

Chapter 8

Epos neuralnet rule

The neural network feature is included into the Epos system by a new rule
in the language-specific configuration file prosody.rul (see Epos documen-
tation [5] about rules). The syntax is

neuralnet filename sent syll

The real configuration file name replaces filename. The word sent tells
Epos that the scope of the rule is the unit on level sent (see p. 31 for unit
levels). The word syll is the target level of the rule. Both may be replaced
by other level names.

The configuration is an enriched TrainingData configuration. The Epos-
specific tags are listed in the table 8.1. The variables used there are (see p. 34
for the common variables):

string $epos input an input expression described further

Epos-specific tags used in the TrainingData configuration:

char2floats definitions of user defined functions as described further
epos output the output may be placed as the fundamental frequency F0

or just ignored
epos loglevel when use="no", all the contents of the phone units con-

tained in the unit on this level are printed
seriesSeparator if set, the series in the epos log will be separated by it.

The series are formed by the scope level of the neuralnet rule (which is
sent in our case)

epos nn the PerceptronNN configuration file used by Epos. When empty,
Epos is only preparing the training data: it does not try to run the
network

46

CHAPTER 8. EPOS NEURALNET RULE 47

Table 8.1: Epos-specific training data configuration

trainingData

?char2floats

+char2float="$string"

*chars="$float"

src="$string"

?default="$float"

?empty="$float"

columns

+column

use="input"|"output"|"no"

?epos="$epos_input"

?epos_output="frequency"|"none"

?epos_loglevel="text"|"sent"|"colon"|"word"

|"syll"|"phone"|"diphone"

?seriesSeparator="$string"

?epos_nn="$filename"

?epos_log="$filename"

?epos_traindata="$filename"

CHAPTER 8. EPOS NEURALNET RULE 48

Table 8.2: User char2float function example

char2float="sonority"

chars="1" src="$diphtong"

chars="0.9" src="$long"

chars="0.8" src="$short"

chars="0.7" src="$sonant$SONANT"

chars="0.6" src="$voiced"

default="0.5"

empty="0"

epos log the network inputs and outputs are written into this file which
can later be used as a training data file

epos traindata the TrainingData configuration file used by the network

8.1 Inputs

Each input is described as an expression with Epos Text Structure Repre-
sentation (TSR) specific functions and user defined char2float functions.

The char2float functions assign values to characters. They may be ap-
plied on any unit, because in the Epos TSR each unit has a one character
content. Phones hold their phoneme, sentences their end mark etc.

The functions are defined by a char2float tag, which may contain one
default subtag, one empty subtag and any number of chars subtags. An
example is given in the table 8.2.

You may use predefined Epos variables in the src tag (see [5] for details
on variables defining). These are denoted by a name preceded by $ and
contain a set of characters, for instance $voiceless contains ptťkfsšcčxŘ.
No character may be assigned in more than one chars tags. The default

value is given to all the units not listed in any of the chars tags. The empty

value is given to empty units, which may be reached by a next or prev

function — for example prev from some first unit.
The priority of the arithmetical and logical functions is the same as in

the C language, see table 8.3. Operators with higher priority are evaluated
earlier. All the operators on the same priority level are processed from left
to right.

This means that for example 2 + 2 * 5 will be processed as 2 + (2 *

5) as + has a lower priority than *, and 2/3/4 as (2/3)/4. In many cases

CHAPTER 8. EPOS NEURALNET RULE 49

Table 8.3: Operator priority

lowest priority
OR

AND

== !=

< <= > >=

+ -

* /

!

highest priority

the default priority will satisfy your needs. You can use the parentheses ()

if it does not or if you are not sure.
The inputs grammar is described in a little simplified form in table 8.4.

I did not enclose the parenthesis nor the commas into the quotes. The sym-
bol char2float stands for a name of a user defined char to float function,
char2float quoted is a name enclosed in quotes. I did not describe the
possibility to omit any of the three next and prev functions parameters.

In all the functions working with unit levels (see p. 31) when you use
a lower level than the target level (set in the neuralnet rule), the result
is undefined. For instance if the target level were word, you could not use
count("phone","syll"). The functions available are:

basic arithmetical functions +, -, *, /

basic logical functions comparison <, <=, >, >=, not-equals !=, equals
==, the negation !, the logical AND and OR. For example:

count("phone","syll") > 2 AND count("phone","syll") <= 5

All the non-zero numbers are converted to the logical true, zero is con-
verted to the logical false. When converting a logical value to a number, true
becomes 1 and false 0

char2float functions float char2float (unit) where char2float is
replaced by the name of a user-defined function, returns the value as described
above

index int index (level1, level2) returns the index of the unit on the
level2 inside the unit on the level1. For example:

CHAPTER 8. EPOS NEURALNET RULE 50

Table 8.4: Grammar of neural network inputs

input = float

unit = "next" (unit, level, int)

| "prev" (unit, level, int)

| "this"

| "ancestor" (unit)

| "maxfloat" (char2float_quoted, level, level)

| (unit)

float = char2float (unit)

| "!" float

| float binary_operator float

| int

| (float)

| FLOAT_NUM

int = "count" (level, level)

| "index" (level, level)

| "basal_f" (unit)

| "cont" (unit)

| INT_NUM

binary_operator = "OR" | "AND" | "==" | "!=" | "<" | "<="

| ">" | ">=" | "+" | "-" | "*" | "/"

INT_NUM = [1-9][0-9]*

FLOAT_NUM = {-}INT_NUM{"."INT_NUM}

level = "text"|"sent"|"colon"|"word"|"syll"|"phone"|"diphone"

CHAPTER 8. EPOS NEURALNET RULE 51

index ("word", "sent") is the index of the word containing the current
processed unit inside the sentence

count int count (level1, level2) returns the count of the units on the
level2 inside the unit on the level1. For example:

count ("phone", "syll") is the count of the phones inside the syllable
containing the current processed unit

next unit next (unit, level, count) returns the unit on the level

which is count to the right of the current processed unit. You can omit
any of the parameters, defaults are unit = this, level = target level,

count = 1. For example:
next ("word",2) is the syllable 2 to the right from the current word,

when the target level in the neuralnet rule is syll

prev like next, but move to the left

this unit this returns the current processed unit on the target level

ancestor unit ancestor (level) returns an ancestor unit of the current
one. It is the same as next (level, 0)

maxfloat unit maxfloat(char2float,level1,level2) returns the unit
on the level2 with maximum value assigned by the user defined char2float

function from all the units inside the scope level1. For example:
maxfloat("sonority","phone","syll") finds the most sonorous phone

in the syllable if sonority is defined as in table 8.2

basal f int basal f (unit) returns the fundamental frequency F0 calcu-
lated by preceding rules outside this neuralnet rule

cont int cont (unit) returns the ASCII code of the one character con-
tent of the given unit, see p. 48

Chapter 9

Neural network controlling
prosody

This chapter describes the process of creating the particular neural network
included with this Thesis.

The network forms prosody of indicative Czech sentences in a neutral
tone. It was trained by a speech corpus consisting of 18 sentences of various
length (see Appendix C). The sentences were read by 3 speakers, one of which
(Pavel Machač) read them twice. The desired outputs in the training data
were extracted from Machač’s 36 utterances. The training data contain 858
rows, one for each syllable.

The fundamental frequency F0 contour is found by pitch pulses. The
sampling frequency was 8 kHz, which means for a time distance T = (ppi −
ppi−1)/8000 between two pitch pulses F0 = 1/T = 8000/(ppi − ppi−1). For
unvoiced segments of the utterances the F0 values are assigned by a linear
interpolation between the neighbour voiced sections. An example of the F0

contour is given in the table 9.1.
The sound borders in the time dimension were extracted manually, by

listening to parts of the sentence sound file. This work lasts many hours.
An example of the results is given in the table 9.2. Both the F0 and the
phone borders were extracted by a team of Petr Horák at the Institute
of Radioelectronics using a Horák’s own created software Speech Studio
(http://sstudio.ure.cas.cz).

The training data inputs were created by the log file feature of the Epos
neuralnet rule (see p. 46). I have prepared a C++ script which joined to-
gether the F0 and the phone borders to compute an average F0 for the phones.
It than found the syllables in the Epos log and assigned the F0 of the most
sonorous phone in the syllable to them.

The inputs selection was based on consultations with Jǐŕı Hanika, to get

52

CHAPTER 9. NEURAL NETWORK CONTROLLING PROSODY 53

Table 9.1: Pitch pulses

frame F0 = 8000/ppi − ppi−1

pp1 4049
pp2 4141 87
pp3 4233 87
pp4 4326 86
pp5 4421 84.2
pp6 4517 83.3
pp7 4616 80.8
pp8 4718 78.4
pp9 4823 76.2
pp10 4928 76.2
pp11 5021 86
pp12 5102 98.8
pp13 5180 102.6

some phonological foundation. An advantage of using a neural network is
that we only have to know what phonological properties control the prosody
and not how nor how much. The inputs are:

count(“syll”,“word”) == 1 monosyllabic words

count(“syll”,“word”) count of syllables in the word

index(“syll”,“word”) / count(“syll”,“word”) order in [0; 1] of the
syllable in the word

index(“word”,“colon”) == 1 AND count(“word”,“sent”) > 1 the
initial word, but not an isolated one

index(“word”,“colon”) == count(“word”,“colon”)
AND count(“word”,“sent”) > 1 the terminal word, but not an
isolated one

count(“word”,“colon”) count of words in a colon

index(“word”,“colon”) / count(“word”,“colon”) order in [0; 1] of
the word in the colon

index(“syll”,“word”) == 1 the first syllable is stressed in the Czech
language

The TrainingProcess agent in Bang creates configuration files, each of
which contains the network description, the weights and the training data
description. Setting the file name in the Epos neuralnet configuration, one
can immediately start to use the new trained network.

CHAPTER 9. NEURAL NETWORK CONTROLLING PROSODY 54

Table 9.2: Phone borders for the sentence “Vlak dnes nejede.”

start frame end frame phone
3982 4982 V
4982 5388 L
5388 5851 A
5851 6584 G
6584 7369 D
7369 7701 N
7701 8135 E
8135 9161 S
9161 9918 N
9918 10324 E
10324 11063 J
11063 11465 E
11465 12276 D
12276 13297 E

I have experimented with various network and inputs sizes. I have used
a window of 0 to 4 neighbours both left and right. This means with 8 Epos
inputs the network had 8, 24, 40, 56 or 72 inputs. From the 36 utterances 24
formed the training data and 12 the evaluation data. The learning algorithm
was the stable conjugate gradient, see p. 12. All the networks had recurrent
connections leading from half of the neurons in the first hidden layer to all
the neurons in the first hidden layer.

Table 9.3 shows the resulting error on the training and evaluation data
sets. The frequency values in the training examples had the average 99.1981
and the standard deviation 20.3818 and the column was filtered with the
linear translation, see p. 40. Thus the numbers in Hertz in the table are
post-processed from the sum-squared-error ESSE to 20.3818

√
ESSE. The post-

processed error is a geometrical average of the errors for the training patterns.
The columns in the table contain connection count, layer sizes, minimal

post-processed error in Hertz on the evaluation set and on the training set,
average error ± standard deviation on the evaluation and training sets and
count of trials with the same architecture and different initial weights.

The errors do not differ much depending on the network size — the small-
est network with only 10 connections achieved the best error 11.0 while the
largest one with 1167 connections 8.5. That is perhaps because of the evalua-

CHAPTER 9. NEURAL NETWORK CONTROLLING PROSODY 55

tion set technique: the training was stopped when the error on the evaluation
set began to grow.

There are some common problems with prosody generated by neural net-
works. As the prosody qualities are random in some extent, the network
may never learn perfectly. And the simple numerical error result may not
be the main criterion — we must listen to the prosody formed by the net-
work to judge its quality [19, p. 186]. To tackle this problem, Traber proposes
[19, p. 196]: “One of the most useful prerequisites for future research on F0

prediction by means of neural networks would be a perceptually appropri-
ate, computable measure of the deviation of synthetic contours from natural
contours. Such a measure could be used for the training as well as for the
evaluation of F0 predictors.”

Hailichová [4] was extremely precise in assessing quality, but she had an
inconsistent speech corpus and she mixed together two kinds of questions,
which have a very different melody in the Czech language — the so-called
“yes-no” and “wh-” questions.

As the post-processed error is a rather big number around 10 Hertz, the
networks differ much in the way they achieve it. However, listening to the
prosody formed by the networks some common properties can be found. The
prosody is much more lively than the one currently used in Epos formed
by rules. Most networks learned well the speaker’s behavior at the sentence
ends, where he strongly lowers his voice.

CHAPTER 9. NEURAL NETWORK CONTROLLING PROSODY 56

Table 9.3: Training results ordered by connection count

con. count layer sizes eval error train error eval avg train avg trials
10 8-1-1 11.0 10.5 11.1 ± 0.05 10.5 ± 0.06 20
20 8-2-1 10.4 9.9 10.9 ± 0.20 10.2 ± 0.18 20
21 8-2-1-1 10.4 9.7 10.9 ± 0.29 10.3 ± 0.30 25
26 24-1-1 9.9 9.1 10.0 ± 0.07 9.3 ± 0.06 40
32 8-3-1 10.1 9.1 10.6 ± 0.25 9.8 ± 0.32 20
36 8-3-2-1 9.8 9.2 10.5 ± 0.32 9.7 ± 0.43 22
42 40-1-1 9.9 8.8 9.9 ± 0.04 8.9 ± 0.04 20
44 8-4-1 9.6 8.7 10.3 ± 0.27 9.4 ± 0.40 20
52 24-2-1 9.2 8.2 9.6 ± 0.14 9.0 ± 0.21 40
53 24-2-1-1 9.4 8.6 10.0 ± 0.23 9.2 ± 0.24 28
55 8-4-3-1 9.8 8.8 10.2 ± 0.25 9.2 ± 0.35 20
58 56-1-1 9.6 8.2 9.8 ± 0.05 8.4 ± 0.05 20
72 8-6-1 9.4 8.4 10.1 ± 0.32 8.9 ± 0.34 20
74 72-1-1 9.8 8.1 9.9 ± 0.04 8.2 ± 0.03 14
80 24-3-1 8.7 7.6 9.4 ± 0.25 8.5 ± 0.49 40
84 40-2-1 9.0 7.6 9.5 ± 0.26 8.2 ± 0.33 20
84 24-3-2-1 9.4 8.3 9.8 ± 0.19 8.8 ± 0.35 13
85 40-2-1-1 9.1 7.6 9.5 ± 0.33 8.0 ± 0.46 10
94 8-6-4-1 9.6 7.7 10.0 ± 0.40 8.5 ± 0.67 10

108 24-4-1 8.9 7.1 9.4 ± 0.19 8.2 ± 0.55 40
116 56-2-1 9.0 6.8 9.4 ± 0.28 7.5 ± 0.34 20
117 56-2-1-1 9.1 7.3 9.5 ± 0.31 8.0 ± 0.51 14
119 24-4-3-1 9.3 7.9 9.6 ± 0.23 8.7 ± 0.48 10
122 8-9-1 9.0 7.2 9.7 ± 0.43 8.1 ± 0.64 20
128 40-3-1 8.8 7.0 9.3 ± 0.25 7.7 ± 0.51 20
132 40-3-2-1 9.0 6.7 9.2 ± 0.28 7.3 ± 0.63 8
168 24-6-1 9.0 7.2 9.3 ± 0.16 7.8 ± 0.43 20
172 40-4-1 8.6 6.5 9.1 ± 0.21 7.2 ± 0.48 20
172 8-9-6-1 9.2 6.1 9.7 ± 0.42 7.8 ± 1.06 10
176 56-3-1 8.5 6.0 9.1 ± 0.30 6.8 ± 0.56 20
180 56-3-2-1 8.5 6.3 9.2 ± 0.46 7.4 ± 0.92 10
190 24-6-4-1 8.9 6.8 9.4 ± 0.22 8.0 ± 0.52 12
202 8-13-1 8.8 5.8 9.4 ± 0.46 7.4 ± 1.12 20
236 56-4-1 8.7 5.4 9.1 ± 0.26 6.4 ± 0.77 20
247 56-4-3-1 8.5 5.9 9.0 ± 0.33 6.7 ± 0.90 10
264 40-6-1 8.7 5.6 9.0 ± 0.21 6.6 ± 0.67 20
314 8-13-9-1 8.9 5.8 9.4 ± 0.33 6.9 ± 0.80 10
316 24-9-6-1 8.7 6.1 9.2 ± 0.29 7.6 ± 0.73 10
352 8-19-1 9.0 5.1 9.6 ± 0.47 7.1 ± 1.06 20
522 24-13-9-1 8.8 6.6 9.2 ± 0.21 7.6 ± 0.71 5
592 8-19-13-1 8.7 5.2 9.0 ± 0.35 6.3 ± 1.01 10

1167 8-28-19-1 8.5 5.1 8.9 ± 0.28 5.4 ± 0.28 9

Chapter 10

Summary

This thesis describes the perceptron network learning process. Three agents
in the multi-agent system for artificial intelligence Bang 3 participate on it:
the PerceptronNN agent contains the learning algorithms, the TrainingData
agent pre- and post-processes the data and the TrainingProcess agent tries
various network architectures and input sizes. The agents work with time
series, too. The recurrent network architecture and the window technique
using the inputs from the neighbour training data examples are implemented.

The outputs of the training process are network configuration files and a
log file. Each configuration file contains the network description, its weights
and the training data description. The log file describes the resulting error size
and allows to analyse the network learning and to choose the most suitable
network.

The future research may add some other learning algorithms like the ge-
netics ones and another network architectures like the RBF networks. Also
some generalization of the fitness functions would be useful, giving the possi-
bility of experimenting with any learning parameters in a similar way to the
process of finding the smallest network described in this work.

The other software part of this thesis is a very flexible configuration file
in the text-to-speech system Epos allowing to describe the inputs to a neural
network and the usage of its outputs. Several neural networks controlling
prosody generation are created using a small training corpus consisting of
18 Czech indicative sentences read twice in a neutral voice. The networks
compute the fundamental frequency F0 for each syllable.

The prosody formed by the neural network is much more lively than
the current one in Epos formed by rules. Various networks produce very
different sentence melodies sounding more or less natural. Better results can
be expected using a bigger training corpus.

An interesting direction of future research would be some perceptually

57

CHAPTER 10. SUMMARY 58

appropriate, computable measure of the deviation of the synthesized con-
tours from the natural ones. The simple sum-squared-error computed for
each syllable does not estimate the practical network quality.

Appendix A

Terminology

Bang a multi-agent system for artificial intelligence

CVS Concurrent Version System — a dominant open-source network-trans-
parent version control system

DTD Document Type Definition — defines the legal building blocks of an
XML document. Defines the document structure with a list of legal
elements

epoch one round of network training — the network is run on all the training
examples and the weights are changed by a learning algorithm

Epos a highly configurable Text-To-Speech system for the Czech language,
one of the best nowadays

fundamental frequency F0 the basic frequency with which a sound pro-
ducing object vibrates. In this work it is used as the fundamental fre-
quency of the vocal cords

norm the Euclidean norm

|x| =

√∑
i

x2
i

perceptron the basic unit of a perceptron neural network. Its output is a
weighted sum of its inputs on which a simple quick transfer function is
applied, see p. 3

performance function the same as an error function, usually the SSE, see
p. 8

59

APPENDIX A. TERMINOLOGY 60

positive semidefinite a matrix A is said to be positive semidefinite if
vTAv > 0 is true for any non-zero vector v

prosody a set of speech properties — usually pitch, intensity and duration

RBF Radial Basis Function networks — neural networks with units forming
circles around the unit center rather than dividing space into subspaces
like perceptrons

singular a matrix is singular if the vectors forming its rows are not linearly
independent or (equivalently) if the inverse matrix does not exist

SSE Sum-Squared Error — sum of squares of differences between the desired
and the real outputs, see p. 8

STL Standard Template Library — a C++ library of container classes, al-
gorithms, and iterators included as a part of the C++ norm but not
yet implemented on all systems in full scope

TSR Text Structure Representation — the internal structure of the Epos
system, see p. 30

TTS Text-To-Speech — the process of synthesizing speech from written
texts by computers

Appendix B

Author’s own source files
contribution

The Bang 3 sources of the classes CPerceptronNN and CTrainingData are
stored apart of the agents definitions to allow to use the classes outside the
Bang system.

In the Bang 3 source distribution, the directory mod/neuralnet contains
the three agents PerceptronNN, TrainingData and TrainingProcess:

nnagents.h declares the PerceptronNN and TrainingData agents
perceptron.b PerceptronNN agent Miluska and her triggers — the agent

forms an interface to the CPerceptronNN class methods
perceptron.cc run-only mode methods of the CPerceptronNN class —

creating the neurons and connections, running the network, copying the
outputs

perceptron.h declares the CPerceptronNN class as inherited from the
TPerceptronStructure class

percinit.cc weights initialization methods of CPerceptronNN
percstruct.cc input / output methods for the TPerceptronStructure

and CPerceptronNN classes
percstruct.h declares the TPerceptronStructure class which contains

the network configuration and is used by the TrainingProcess to man-
age the network configuration

perctrain.cc perceptron learning related methods — weights perturba-
tion, backpropagation, modified Levenberg-Marquardt, stable conjugate
gradient, the methods which iterate through the learning process

traindata.b TrainingData agent Igor and his triggers — the agent forms
and interface to the CTrainingData class methods

61

APPENDIX B. SOURCE FILES CONTRIBUTION 62

traindata.cc CTrainingData methods — data reading, examination, in-
put window processing, iterating through the data table

traindata.h declares the CTrainingData class and defines its inline func-
tions. Declares the TFilter class with its inline pre- and post-processing
functions

trainprocess.b TrainingProcess agent John and his triggers. As op-
posed to the other two agents, he is not only an interface but contains
all the training process functionality — iterates through the training
batches, calls the other two agents to read the data and train a network
and creates the training log

trainprocess.h declares the TrainingProcess agent and his structures
xmltempl.cc the three agents configuration reading / writing
xmltempl.h templates for the three agents configuration

In the Bang 3 source distribution, in the directory ext:

utils.h,cc a few useful utilities
xmlutils.h,cc XML reading / writing utilities, used by the xmltempl.cc

In the Bang 3 source distribution, in the directory dict there are the basic
data structures. I have created some new containers based on the previous
existing ones and inspired with the C++ Standard Template Library (STL):

matrix.h,cc number matrix. Supports matrix multiplication and inversion
pair.h,cc pair of two arbitrary types
set.h,cc contains a sorted data vector
string.h,cc this file was created by Pavel Krušina, I have added some

features — replace to replace substrings by another ones, split to split
into parts by a given delimiter, substr to get a substring

svector.h,cc small vector is an alternative vector class to the TVector

created by Pavel Krušina with smaller memory requirements
iterator.h iterator and const iterator allow to unify the iteration

through a vector, a set and a map, the second one gives access to constant
objects

xmlstream.h,cc a structure allowing to read / write containers in an
alternative, short manner without the XML tags around each item. The
network weights are written and the training data are read by it

The Epos source files are all in the directory src:

neural.y Bison parser which creates an expression tree from a neural net-
work input definition

APPENDIX B. SOURCE FILES CONTRIBUTION 63

neural.h,cc structures used to execute the neuralnet rule: CNeuralNet
is the main class which prepares the inputs, runs the network and places
the outputs, CExpression contains and computes the expression tree,
TTypedValue encapsulates a union to allow to work safely with various
types

Appendix C

Network Training Corpus

The training corpus prepared by Petr Horák was formed by 2 x 2 x 3 x 3
sentences: There are compound sentences consisting of 1, 2 or 3 sentences
and these may be short or long. Every sentence type is represented by 3
different sentences. Every sentence was spoken twice by Pavel Machač. Both
utterances were used.

1. Vlak z Pardubic do Plzně dnes odpoledne nejede.

2. Jiné podrobné údaje o kulturńıch akćıch nemáme.

3. Soubor obsahuj́ıćı tabulky dat je uložen.

4. Vlak dnes nejede.

5. Jiné údaje nemáme.

6. Soubor je uložen.

7. Trať z Pardubic do Plzně se tento týden opravuje, a proto osobńı vlak
ve čtrnáct padesát nejede.

8. Výsledek našeho výpočtu nebude dost přesný, protože zat́ım nemáme
k dispozici jiné přesné údaje.

9. Soubor obsahuj́ıćı tabulky dat je uložen a program bude po stisknut́ı
klávesy Enter ukončen.

10. Trať se opravuje, a proto vlak dnes nejede.

11. Výsledek nebude přesný, protože nemáme jiné údaje.

12. Soubor je uložen a program bude ukončen.

64

APPENDIX C. NETWORK TRAINING CORPUS 65

13. Trať z Pardubic do Plzně se tento týden opravuje, a proto je dočasně
omezen provoz mezi oběma mı́sty, dokud nebudou odstraněny následky
prudkého deště.

14. Výsledek posledńıho výpočtu nebude tak přesný, jak jsme při zaha-
jováńı výzkumného úkolu chtěli, protože v současné době nemáme jiné
přesné údaje.

15. Soubor obsahuj́ıćı úplné tabulky dat je uložen, program bude ukončen
stiskem klávesy Enter a poč́ıtač se po uložeńı ostatńıch programů vypne.

16. Trať se opravuje, a proto je provoz omezen a vlak dnes nejede.

17. Výsledek nebude tak přesný, jak jsme chtěli, protože nemáme jiné
údaje.

18. Soubor je uložen, program bude ukončen a poč́ıtač se vypne.

Appendix D

User guide

This appendix describes the programs included on the CD with this the-
sis. It is the Epos system and the Bang 3 system, both fully functional on
MS Windows and many Linux and Unix distributions. Please read the file
readme.txt for last updates and changes.

Both systems are included in one archive eposbang.zip because the
source files in Epos have a relative path to the source files in Bang. To
run Bang 3 on a Unix / Linux, run these files:

cd bang/bang3

autogen.sh

configure

ln -s impl.DivineOffering impl

make

bang3

To run Bang 3 on a Windows system, you must install ActivePerl into the
directory Program Files\Perl. You can download it from web, but for you
convenience it is included on the CD. Run the file bang\bang3\win32ize.bat
and open the bang3.dsw workspace in MS Visual C++ 6, build the files and
run Bang from the environment.

When you press any key, a prompt >> is shown. See p. 32 for details. Two
special commands are defined to run the training process agent to train a
network. The command train runs the training process
bang/bang3/test/manual/ffnn/trproc.txt

which uses the corpus for the prosody network. It is the sequence of the
following messages:

John request read file CString=test/manual/ffnn/trproc.txt

John request join TrainingData CString=Igor

John request join PerceptronNN CString=Miluska

66

APPENDIX D. USER GUIDE 67

John request run

The command train1 runs the training process trproc test1.txt with
a training corpus consisting of 40 pairs of a random number x ∈ [−1; +1]
and y = 0.5+0.25 sin(3πx). You can change the learning algorithm used and
other parameters in the configuration files. The training log and the trained
networks are stored in bang/bang3/test/manual/ffnn/results.

During the training you can ask the training process John, the neural
network Miluska or the training data Igor for information, e.g.

Miluska request info

You can stop the training by John request end and quit Bang 3 by
halt.

To run Epos on a Unix/Linux, first configure Bang. Than run the files:

cd epos/epos/src

make install

epos --base dir ../cfg

say some-text-to-be-spoken

To run Epos on Windows, run epos/epos/arch/win/configure.bat.
Open the src/epos.dsw workspace in MS Visual C++ 6 and set the ac-
tive configuration to say - Win32 Release in menu Build. Than build the
project. Run the file epos.bat in the main directory. The built client is in
release/bin/say.exe.

The prosody configuration files are in epos/epos/cfg/lng/czech. The
file prosody.palkova contains the prosody rules used in the public Epos
versions. If you copy it to prosody.rul, you can listen to the prosody formed
without neural networks. The file prosody.neu contains the configuration file
used for the prosody network. By changing the epos nn value in it you can
listen to various networks.

Bibliography

[1] Jǐŕı Š́ıma a Roman Neruda. Teoretické otázky neuronových śıt́ı. Mat-
fyzpress, Praha, 1996.

[2] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press Inc., 1997.

[3] Howard Demuth and Mark Beale. Neural Network Toolbox (For Use
with Matlab), User’s Guide Version 4. The Mathworks, Inc., 2000.

[4] Hana Hailichová. Ř́ızeńı základńıho kmitočtu syntetické řeči pomoćı
neuronové śıtě. Master’s thesis, ČVUT FEL, Praha, 1998.

[5] Jǐŕı Hanika. Epos on-line documentation.
http://epos.ure.cas.cz.

[6] Jǐŕı Hanika. Text-to-speech synthesis. Master’s thesis, MFF-UK, Praha,
2000.

[7] Jǐŕı Hanika and Petr Horák. Dependences and independences of text-to-
speech. In Hans-Walter Wodarz, editor, Forum Phoneticum 69, Frank-
furt a.M., 2000.

[8] Pavel Jiroušek. Sestavováńı prstoklad̊u pro houslový part. Master’s
thesis, MFF-UK, Praha, 1998.

[9] Pavel Krušina. Bang on-line documentation.
http://bang2.sf.net.

[10] Petra Kudová. Neuronové śıtě typu rbf pro analýzu dat. Master’s thesis,
MFF-UK, Praha, 2001.

[11] Jung-Chul Lee, Youngjik Lee, Sang-Hun Kim, and Minsoo Hahn. Into-
nation processing for tts using stylization and neural network learning
method.
http://www.asel.udel.edu/icslp/cdrom/vol3/433/a433.pdf.

68

BIBLIOGRAPHY 69

[12] Jǐrina Marcel. Neuronové śıtě - skripta. UK MFF KSI, Praha, 1995.

[13] Ondřej Maštálka. Neuronové śıtě a jejich využit́ı pro zpracováńı a
predikce časových řad. Master’s thesis, MFF-UK, 2001.

[14] I. Petrović, M. Baotić, and N. Perić. An efficient newton-type learning
algorithm for mlp neural networks.
http://www.rasip.fer.hr/act/papers/NC98 913-085.PDF.

[15] B. Pfister, V. Jantzen, and C. Traber. Verbesserung der natürlichkeit in
der sprachsynthese, jahresbericht 2000 für das projekt cost258. Zürich,
2001.

[16] R. Salomon. Verbesserung konnektionistischer Lernverfahren, die nach
der Gradientenmethode arbeiten. PhD thesis, TU Berlin, October 1991.

[17] R. Salomon and J. L. van Hemmen. Accelerating backpropagation
through dynamic self-adaptation. Neural Networks, 1996.

[18] D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. Advances
in Neural Information Processing Systems, pages 225–231. Number 8.
MIT Press, Cambridge, 1996.

[19] Christof Traber. SVOX: The Implementation of a Text-to-Speech System
for German. PhD thesis, Swiss Federal Institute of Technology, Zürich,
1995.

