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Introduction

Automatic phonetic speech segmentation, or the alignment of a known phonetic
transcription to a speech signal, is an important tool for many fields of speech
research. It can be used for the creation of prosodically labelled databases
for research into natural prosody generation, for the automatic creation of new
speech synthesis inventories, and for the generation of training data for speech
recognisers. Most systems for automatic segmentation are based on a trained rec-
ognition system operating in ‘forced alignment’ mode, where the known transcrip-
tion is used to contrain the recognition of the signal. Such recognition systems are
typically trained on hidden Markov models of phoneme realisations. Such models
are trained from many realisations of each phoneme in various phonetic contexts
as spoken by many speakers.

An alternative strategy for automatic segmentation, of use when a recognition
system is not available or when there is insufficient data to train one, is to use a
text-to-speech system to generate a prototype realisation of the transcription and
to align the synthetic signal with the real one. The idea of using speech synthesis
for automatic segmentation is not new. Automatic segmentation for French
is thoroughly described by Malfrére and Dutoit (1997a). The algorithm developed
in this article is based on the idea of Malfrére and Dutoit (1997b) as modified
by Strecha (1999) and by Tuckova and Strecha (1999). Our aim in pursuing
this approach was to generate a new prosodically labelled speech corpus for
Czech.
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Speech Synthesis

In this study, phonetically labelled synthetic speech was generated with the Epos
speech synthesis system (Hanika and Horak, 1998 and 2000). In Epos, synthesis is
based on the concatenation of 441 Czech and Slovak diphones and vowel bodies
(Ptacek, et al., 1992; Vich, 1995). The sampling frequency is 8 kHz. To aid align-
ment, each diphone was additionally labelled with the position of the phonetic
segment boundary. This meant that the Epos system was able to generate synthetic
signals labelled at phones, diphones, syllables, and intonational units from a text.
The system is illustrated in Figure 33.1.

Segmentation

The segmentation algorithm operates on individual sentences, therefore both text
and recording are first divided into sentence-sized chunks and labelled synthetic
versions are generated for each chunk. The first step of the segmentation process is
to generate parametric acoustic representations of the signals suitable for aligning
equivalent events in the natural and synthetic versions.

The acoustic parameters used to characterize each speech frame fall into five
sets. The first set of parameters defines the representation of the local speech
spectral envelope — these are the cepstral coefficients ¢; obtained from linear predic-
tion analysis of the frame (Markel and Gray, 1976).

co = In(v/x), (1)
1 n—1
Cp = —ay — fZ(n —k)ep—xay for n > 0, (2)
n
k=1
phonetic i
tranSCriptiOn, text parser
prosody and
segmentation ¢
rules
rules application
_dlphone speech synthesis
inventory
sounds
boundaries synthetic phonetic
information speech segmentation

Figure 33.1 Epos speech synthesis system enhanced for segmentation
Note. The bold parts were added
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where:

o ... linear prediction gain coefficient
ap=1land a, =0fork > M
M ... order of linear prediction analysis.

The delta cepstral coefficients Ac; form the second set of coefficients:
AC‘o(i) = Co(i), (3)
Acy (i) = ¢n(i) — (i — 1), (4)

where: ¢;(i) is j'™ cepstral coefficient of i frame.
The third set of parameters is formed by the short time energy and its first
difference (Rabiner and Schafer, 1978):

E@)= Y (i N (1= ) = m) )
AE(I)=E(i)—E(i-1), (6)

where:

x ... speech signal
i...frame number
N ... frame length
u. .. frame overlapping

(1. 0<a<N
w(a) = {0: otherwise

Finally, the zero-crossing rate and the delta zero-crossing rate coefficients form the
last set of parameters.

Z(i) = i S (x(m)x(m —1))w(i- N - (1 — p) —m), ()

m=—00

AZ()=Z({i) - Z(i-1), (8)
where:

X ... speech signal

i...frame number

N ... frame length

u... frame overlapping

{ I: 0<a<N
0:  otherwise

f(a)—{L a<k, (k.<0)

0: otherwise.

All the parameters are normalized to the interval (0, 1). The block diagram of the
phonetic segmentation process is illustrated in Figure 33.2.

The second step of the process is the segmentation itself. It is realized with
a classical dynamic time warping algorithm with accumulated distance matrix D.
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Figure 33.2 Phonetic segmentation process

D(1,J) D(2,7) L D(I,J)
D(,J—1) D2, J-1) L DIJ-1)
D= M M D(i.)) M 9)
D(1,2) D(2,2) L D(1,2)
D(1,1) D(2,1) L D(I,1)

where:

I ... number of frames of the first signal,
J ... number of frames of the second signal.

This DTW algorithm uses symmetric form of warping function weighting coeffi-
cients (Sakoe and Chiba, 1978). The weighting coefficients are described in Figure
33.3.

In the beginning the marginal elements of the distance matrix are initialized (see
equations 10-12). Other elements of the distance matrix are computed by equa-
tion 13.

D(1,1) = d(x(1), y(1)) (10)

D(i,1) = D(i — 1,1) + d(x(i), »(1)) i = IKI (11)

D(1,j) = D(1,j = 1) + d(x(1), (/) = 1KJ (12)
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D(i-1, j) w=1 D(i, j)

D(i-1,j-1) D@, j-1)

Figure 33.3 Weighting coefficients w for dynamic programming

D(i = 1,j) +d(x(:), y(J))
D(ls]): D<l_ls]_1)+d(x l)sy(])) (13)
D(i,j — 1) +d(x(i), y(j))

i=1KI;j = 1KJ

where: d(x(i), ¥(j)) ... distance between the i frame of the first signal and the j of
the second signal (see equation 14) and MIN(¥)... minimum function.

The distance d(x,y) is a weighted combination of a cepstral distance, an energy
distance and a zero-crossing rate distance used to compare a frame from the nat-
ural speech signal x and a frame from the synthetic reference signal y.

Heep Neep

d(x,y) = o Z(Ci(X) — () + BZ(Ac,-(x) — Aci(y)? +9(E(x) - E())°

+O(AE(x) = AE())* + @(Z(x) = Z(7))* + n(AZ(x) = AZ(y))?

(14)

Values for the weights in equation (14) and other coefficients of the distance
metric were found by an independent optimisation process leading to the following
values:

e frames of 20 ms with a n = 0.7 (14 ms) overlap;
e linear predictive analysis order: M = §;
eu=15p=125y=150=1¢=1,n=15;
e zero-crossing rate constant k, = —20000.

An example of accumulated distance matrix with minimum distance trajectory is
shown in Figure 33.4. The next section shows the results of the first experiments
performed with our segmentation system.
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Figure 33.4 An example of a DTW algorithm accumulated distance matrix

Results

The system presented in the previous section was evaluated with one male and one
female Czech native speaker. Each speaker pronounced 72 sentences, making a
total of 3,994 phonemes per speaker. Automatic segmentation results were then
compared with manual segmentation of the same data. Segmentation alignment
errors were computed for the beginning of each phoneme and are analysed below
under 10 phoneme classes:

vow — short and long vowels [a, €, 1, 0, 0, U, a:, e:, i, o, u:]
exv — voiced plosives [b, d, 3, d]

exu — unvoiced plosives [p, t, ¢, k]

frv — voiced fricatives [v, z, 3, f, 1]

fru — unvoiced fricatives [f, s, [, x, ]

afv — voiced affricates [dz, d3]

afu — unvoiced affricates [ts, tJ]

liq — liquids [r, 1]

app — approximant [j]

nas — nasals [m, n, 1, n]

Table 33.3 shows the percentage occurrences of each phoneme class.

Phoneme onset time errors as a function of the absolute value of their magnitude
are given in Table 33.1 (male voice). Phoneme duration errors are presented in
Table 33.2 (male voice). The same error data for the female voice are given in
Tables 33.4 and 33.5. In most cases, segmentation results were superior for the
female voice even though the male speech synthesis voice was used (Table 33.6).

As we can see from the tables, the average segmentation error for vowels is the
smallest one among all the speech sound groups (see Figure 33.5). Very good
results were also obtained for the class of unvoiced plosives. This is probably
because the spectral patterning of these sounds is quite distinct, with a clear closure
at the onset and with a release that often remains separate from the following
speech sound. On the other hand, fricatives showed larger alignment errors. This
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Table 33.1 Error rates (%) as a function of the segmentation magnitude error in ms for phoneme
onsets for male voice

t(ms) <5 <10 <20 <30 < 40 < 50 > 50
Nay (%) 19.3 37.6 64.5 79.4 86.3 95.2 4.8
Nyow (%0) 19.1 35.5 61.2 76.0 83.0 95.0 5.0
Nexy (%0) 21.5 45.0 75.7 87.4 91.2 95.9 4.1
Nexy (%) 21.2 42.2 73.5 86.7 93.1 97.9 2.1
Ny (%) 20.9 41.4 68.9 83.6 91.4 95.9 4.1
Ny (%) 11.5 26.2 54.4 74.1 87.2 96.7 33
Napy (%) 0.0 10.0 40.0 70.0 70.0 100.0 0.0
Nypy (%0) 26.1 S1.1 75.0 88.0 92.4 100.0 0.0
njq (Y0) 18.5 37.6 66.5 85.3 91.2 98.1 1.9
Nypp (%0) 13.5 27.0 52.7 76.4 83.8 92.6 7.4
Nps (%) 229 42.5 63.3 73.5 79.3 86.2 13.8

Table 33.2 Error rates (%) as a function of the segmentation magnitude error in ms for phoneme
duration for male voice

t[ms] <5 <10 <20 <30 <40 <50 > 50
Ny (%) 19.4 37.5 64.8 80.0 87.2 90.9 9.1
Nyow (Y0) 19.1 35.7 61.5 76.4 83.7 87.6 12.4
Nexy (%0) 21.5 454 75.7 87.4 91.2 94.0 6.0
Nexu (%0) 21.2 42.2 73.5 86.9 93.2 95.9 4.1
Dy (%) 21.3 41.8 69.3 84.0 91.8 94.7 5.3
Nfry (%) 11.5 26.2 54.8 74.4 87.5 93.8 6.2
Nary (%) 0.0 10.0 40.0 70.0 70.0 80.0 20.0
Nagy (%) 26.1 511 75.0 88.0 92.4 97.8 2.2
njiq (%) 18.5 37.6 66.8 85.9 92.8 95.0 5.0
Napp (%) 14.2 27.7 53.4 71.7 85.8 89.2 10.8
Npas (%0) 23.2 43.4 64.9 76.5 83.4 87.6 12.4

may be because the initial and final parts of fricatives, as opposed to plosives,
overlap with adjacent speech sounds, especially with vowels. The voiced affricates
have the poorest alignment, however there were very few occurrences of these
sounds in the corpus. Borders between nasals and other sonorants also showed
larger than average alignment error.

The automatic segmentation algorithm seems to be robust to mistakes in tran-
scription. In places where the natural speech utterance and synthetic speech utter-
ance are not the same, the algorithm skips the unequal parts and continues to
correctly align the other parts of the signal.

Applications

The main application of the Czech speech segmentation system is the creation of a
prosodically labelled speech database to be used for further research on prosody



Automatic Speech Segmentation 335

Table 33.3 Distribution of phoneme occurrences by phoneme class

phoneme class Number of occurrences Occurrence (%)
total 4066 100.0
short and long vowels 1736 42.7
voiced plosives 317 7.8
unvoiced plosives 533 13.1
voiced fricatives 244 6.0
unvoiced fricatives 305 7.5
voiced affricates 10 0.2
unvoiced affricates 92 2.3
liquids 319 7.8
approximant 148 3.6
nasals 362 8.9

Table 33.4 Error rates (%) as a function of the segmentation magnitude error in ms for phoneme
onsets for female voice

t(ms) <5 <10 <20 <30 < 40 < 50 > 50
Ny (%) 224 40.5 66.0 80.3 87.1 95.5 4.5
Nyow (Y0) 20.9 38.6 63.2 77.4 84.1 94.6 5.4
Nexy (%) 31.5 55.5 81.1 89.6 94.6 97.2 2.8
Nexy (%0) 24.0 422 70.4 85.4 91.4 97.9 2.1
Dfry (%) 29.9 53.7 75.8 86.9 93.0 97.1 29
Ngry (%) 10.8 21.3 52.1 74.4 87.9 96.4 3.6
Napy (%) 20.0 50.0 80.0 100.0 100.0 100.0 0.0
Napy (Y0) 32.6 58.7 82.6 90.2 94.6 100.0 0.0
njiq (%) 26.3 48.6 75.2 90.3 95.3 98.7 1.3
Napp (%) 23.6 37.8 58.1 76.4 82.4 93.2 6.8
N, (%0) 17.7 30.4 55.2 69.1 76.2 89.2 10.8

modelling, especially for the training of neural nets for automatic pitch contour
generation (Horak, ef al. 1996; Tuckova and Horak, 1997) and also for the analysis
and synthesis of pitch contours performed in our lab (Horak, 1998). Research into
Czech phoneme duration (motivated by Bartkova and Sorin, 1987) was started
with the use of the segmentation system.

The speech segmentation tool has also been used for the transplantation of pitch
contours between natural and synthetic utterances in order to evaluate our speech-
coding algorithm. The block structure of our pitch transplantation tool is given in
Figure 33.6.

Future applications for this approach to automatic segmentation will be to accel-
erate the creation of new voices for existing speech synthesizers on the basis of an
existing voice (Portele et al., 1996).
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Table 33.5 Error rates (%) as a function of the segmentation magnitude error in ms for phoneme
durations for female voice

t(ms) <5 <10 <20 <30 < 40 <50 > 50
nap (%) 22.5 40.7 66.4 81.0 88.1 91.9 8.1
Nyow (%0) 21.0 38.9 63.6 77.9 85.0 89.5 10.5
Nexy (%0) 31.9 55.8 81.4 90.2 95.3 97.2 2.8
Nexy (%) 24.0 42.2 70.4 85.7 92.1 95.5 4.5
Ny (%) 29.9 53.7 75.8 87.3 93.4 95.9 4.1
Ny (%) 11.1 21.6 52.5 74.8 88.5 93.1 6.9
Napy (%) 20.0 50.0 80.0 100.0 100.0 100.0 0.0
Nypy (%0) 32.6 58.7 82.6 90.2 94.6 96.7 33
njq (Y0) 26.3 48.9 75.5 90.6 96.2 97.8 2.2
Nypp (%0) 23.6 38.5 59.5 79.1 85.1 89.9 10.1
Nps (%) 17.7 30.4 56.1 71.0 79.3 84.3 15.7

Table 33.6 Average durations of phoneme classes for manual and automatic segmentation for both
male and female speakers

Phoneme class Male speaker Female speaker
manu auto manu auto

total 84.7 88.0 77.0 79.2
short and long vowels 83.3 82.9 81.6 81.3
voiced plosives 77.6 72.9 69.6 65.7
unvoiced plosives 88.4 87.5 78.4 76.9
voiced fricatives 78.2 95.8 66.5 72.7
unvoiced fricatives 113.7 129.8 90.4 105.2
voiced affricates 120.0 141.7 99.9 108.9
unvoiced affricates 126.0 127.3 113.5 115.1
liquids 59.3 63.2 48.4 50.3
approximant 74.0 77.2 61.8 65.6
nasals 87.5 101.1 76.8 88.2

Average durations of phoneme classes (male speaker) Average durations of ph 1 (female speaker)

160 140

140 120
=120 1004
E 1004 £
S g0 omanval g 801 Omanual
K] 60 Wautomatic 60 mautomatic
3 40 3 404

20 4 204

0 vow exv exu frv fru afv afu qu app nas 04 vow exv exu frv fru afv afu lig app nas

phoneme classes phoneme classes

Figure 33.5 Average durations of phoneme classes for manual and automatic segmentation
for both male and female speakers
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Figure 33.6 Transplantation of a pitch contour using automatic segmentation

Conclusion

The preliminary evaluation of the automatic segmentation algorithm shows that
the accuracy of the automatic segmentation is sufficient for creating prosodically
labelled speech corpora and for prosody transplantation, but it is not yet adequate
for unit inventory creation. However, the automatic segmentation algorithm could
be used for a new unit inventory creation, if supplemented with a manual or
semiautomatic adjustment.

New speech corpora from several speakers have been recorded. We are working
now on the manual labelling of these speech corpora for a better evaluation of the
presented system. We plan to use the described automatic segmentation system for
creation of a new 16 kHz diphone inventory which could be used for 16 kHz auto-
matic segmentation algorithm. We also plan to extend the new diphone inventory
by CC diphones and by Czech consonants missing in the current 8 kHz diphone
inventory (n, I') (Palkova, 1994).

The Epos speech system is a free multilingual speech synthesis system (Horak
and Hanika, 1998) which can be used for automatic segmentation of other lan-
guages (e.g. German). The Epos speech system can be freely downloaded from
http://epos.ure.cas.cz/. We plan to make the automatic segmentation software a
free addition to the system.
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