
TEXT-TO-SPEECH CONTROL PROTOCOL

TTSCP

TTSCP

is a client-server connection-oriented, both human- and machine-readable
communication protocol, remotely similar to the File Transfer Protocol (RFC 959) in
spirit.

is offered as a standard interface for controlling generic speech processing
applications, not only Text-To-Speech ones. It is primarily designed to run atop TCP
or any other reliable connection-oriented underlying protocol.

Jiøí Hanika
Faculty of Arts, Charles University, Prague

geo@cuni.cz

Petr Horák
Institute of Radio Engineering and Electronics,

Academy of Sciences, Prague
horak@ure.cas.cz

TTSCP modules

Input and output modules

The following syntactic conventions hold for input and output modules (see the command in the diagram). If the module

name begins with a , the rest of the name is a data connection handle. If it begins with a slash, it is an absolute file name. Such

absolute file names however form a name space distinct from that of the underlying operating system. In Epos, the name space is
a single directory defined by the option. It must be impossible to escape from such name space by

inserting parent directory references in a file name or otherwise.

If the module name begins with a , the rest of the name is a special input/output module identifier. The only identifier generally

supported is , which can only be used as an output module with the type. Any waveform passed to

this module should be played over using the local soundcard.

The output data type of an input module and the input data type of an output module are determined by the respective adjacent
modules. If input and output modules are directly connected, it is assumed that the data is a plain text.

The TSR data type can not be sent or received, and may thus be totally implementation and architecture dependent.

strm

$

pseudo_root_dir

#

localsound waveform

Explicit data type specifiers

Sometimes an ambiguity concerning the type of data passed at a certain point within the stream may occur. This is currently
the case with streams consisting of input and output modules only (such as a stream to play out an audio icon from a waveform
file to a sound card device); in the future, ambiguously typed versatile processing modules may be introduced, too.
Sometimes the data type is semantically irrelevant (for example, a socket-to-socket forwarding stream), sometimes the
default data type, that is, a plain text, is a reasonable choice. There are however instances where the type matters, like copying
a waveform file to a sound card device: the waveform header must be stripped off and the appropriate s must be issued

to replay the raw waveform data with the appropriate sampling frequency, sample size and so on.

The data types can be expressed explicitly by inserting a pseudo-module into the stream at the ambiguous position. Failing
that, the output data type of the preceding module and/or the input data type decides the data type at this point. Failing even
that, the server will assume plain text data.

ioctl

Processing modules

At the moment there are only few modules implemented that do a real processing. All of them have fixed names and types.

client connects to the server

client establishes a second connection to
the server, to be used for data transfer

TTSCP spoken here
protocol: 0
extensions:
server: Epos
release: 2.4.18
handle: zII3eaj0

setl language czech

setl voice remote-voice

TTSCP spoken here
protocol: 0
extensions:
server: Epos
release: 2.4.20
handle: O29-m2UZ

200 OK

show location

200 OK

kubec.czech@epos.ure.cas.cz:8779
200 OK

TTSCP spoken here
protocol: 0
extensions:
server: Epos
release: 2.4.20
handle: zC-4EEl0

data O29-m2UZ

200 OK

Tak to chodí.

connection becomes a data connection

strm $zC-4EEl0:raw:rules:diphs:synth:#localsound

200 OK

appl 13
112 started

server applies modules raw, rules and diphs,
thereby transforming the text "Tak to chodí"
to a corresponding speech synthesizer input

server establishes a second connection to
the other server, to be used for data transfer

server connects to another server as a client

TTSCP spoken here
protocol: 0
extensions:
server: Epos
release: 2.4.18
handle: 9nEol3WOdata zII3eaj0

set language czech

set voice kubec

connection becomes a data connection

200 OK

122 total bytes
3622
123 written bytes
3622

200 OK

200 OK

strm $9nEol3WO:synth:$9nEol3WO
200 OK

appl 260

260 bytes long binary input to the synthesizer

112 started

3622 bytes long waveform

server feeds the received
waveform to the local sound card

both parties disconnect both connections

600 goodbye

200 OK

Sample TTSCP session using a remote speech synthesizer

done

122 total bytes
3622
123 written bytes
3622
200 OK

3622 bytes long waveform

down

Stop the server. Quit pending sessions. May disappear in the future.

TTSCP Commands

TTSCP commands are newline-terminated strings. Each of them begins with a command identifier, some of them may
continue with optional or mandatory parameters, depending on the particular command. Each command generates one or
more "replies", the last reply indicating completion and sometimes also some command-specific information.

appl

Apply the current data processing stream to some data. The parameter is a decimal number specifying the number of bytes to
be processed.

intr

Interrupt an active stream. The parameter is a control connection handle and controls the connection to be interrupted.

The server should try to discard as much pending data as possible, including e.g. waveform data already written to a sound
card.

The server will reply a 401 completion code to the interrupted connection, whereas a 200 completion code will acknowledge
a successful command.intr

data

Turn this control connection into a data connection. The parameter is the handle of an existing control connection to attach
this connection to. The sole consequence of this attachment relation is a disconnect of the data connection when the specified
control connection is disconnected. (It is therefore common for a client to open two connections, to get their connection
handles, to turn one into a data connection and to attach it to the other connection. That way the client obtains a control and a
data connection which will gracefully shutdown even after the client abruptly disconnects.)

delh

Terminate a specified data connection. The parameter is the data connection handle to be terminated. If successful, the
connection is disconnected by the server.

user

Should precede all TTSCP exchanges. Its parameter is "anonymous" or a local or configured user account name. Some other
user names may acquire special meaning.

strm

Prepare a data flow stream. The parameter is a colon-separated sequence of data processing modules; commands such as
cause specified data to be run through the modules from left to right. Any two adjacent modules must be compatible,

that is the type of output produced by the one to the left must match the type of input processed by the one to the right. The
leftmost module must designate a source (input) module for the whole stream, the rightmost one must designate a destination
for the data produced by the stream.

The stream is not automatically active. It processes data only when requested by the command.

The stream lasts until the next command or termination of the TTSCPconnection, then it is deleted.

appl

appl

strm

done

Issued as the last command in a session. The client may exit just after sending this command. The server should reply with
error code 600.

pass

Attempts to validate an account, as given by a previous "user" command. If no valid "user" command was ever received, the
internal server password may be used. This may enable some internal commands such as "down" or "setg". (Epos stores this
internal password in /var/run/epos.pwd while it is listening on the standard TTSCPport.)

The password is a string of alphanumeric characters, dashes and underlines, no more than 250 bytes long.

setl

Set a server configuration parameter. The parameter is a whitespace-separated "option value" pair. The server may ignore
this command altogether with an error code 442. In any case, this setting should never alter the execution environment of
existing and/or future sessions. The server will reply with an error code 412 if the value assigned is illegal, or with 451 if the
server is configured not to allow to change this parameter (may depend on the current authentication status).

The settings apply to the current session; use for more permanent settings. Note also that setting some options can have

arbitrary side-effects.

If the option name is "language" or "voice", the command will attempt to switch the language or voice, respectively.

The standardization status of this command is still unclear. It is definitely reasonable to use compatible option names
between server implementations where applicable, but the set of useful configuration parameters seems to be impossible to
specify in advance.Any comment on this issue is welcome.

setg

show

Show a configuration parameter value. The parameter is an option name. The server may ignore this command with error
code 442.

and may be used for listing available languages, as well as available voices for the

current language.

show languages show voices

chunk

join

raw

rules

print

diphs

synth

The text is split into parts convenient for latter processing. These parts usually correspond at least to whole utterances; it is
correct not to split the text at all, but care must be taken not to cause a split which significantly alters the final rendering of the
text.

It is customary to use the module just after a module. If this module receives two consecutive texts such that the

module would not split their concatenation between them, the module may merge them to a single text, that is, it

may silently drop the first subtask and prepend the text to the text acquired later. This delay may cross the boundary of an

command.

The input text is converted in a language dependent way to the TSR, assuming it is a plain text without any specific TTS escape
sequences or other special formatting conventions. Except for tokenization and whitespace reduction the conversion should not
try to process the text, especially not in a language dependent way; this goal doesn't seem to be always feasible.

The voice dependent TTS or other rules are applied to a TSR.

The TSR is converted to a plain text representation, suitable as a user-readable output. The conversion should be as
straightforward as possible and should not emit any special formatting character sequences. Ideally, successive application of
the and modules should not significantly alter the text.

This module extracts the speech segment layer from the input TSR into the linear speech segment stream format; the rest of the
TSR is discarded.

The input speech segment stream is synthesized in a voice dependent way.

join chunk

chunk join

appl

raw print

NOTES

extract speech segments

splits text

joins texts

speech synthesis

parses text

NAME

CHUNK

JOIN

RAW

RULES

PRINT

SYNTH

DIPHS

INPUT FORMAT

plain text

plain text

speech segments

plain text

TSR

TSR

TSR

OUTPUT FORMAT

plain text

plain text

waveform

TSR

TSR

plain text

speech segments

Available processing modules:

This contribution is supported by Czech Ministry of Education project No 102/96/K087 and project COST 258. Further information can be found on .http://epos.ure.cas.cz/

EPOS
text parser

rules application

SAMPLE TTSCP SESSION USING A REMOTE SPEECH SYNTHESIZER

text

TSR

waveform

network data

connection

SSI

TTSCP

CLIENT

network data

connection

EPOS.URE.CAS.CZ

text parser

rules application

speech synthesis

network data

connection

network data

connection

waveform

SSI

speech synthesis

TTSCP STREAM EXAMPLES

EPOS
text parser

rules application

text text

TSR

waveform

network data

connection

network data

connection

text

output

sound card
file

speech.wav

SSI

text

speech synthesis

TSR

TSR

SSI

text to speech stream

phonetic transcription stream

TSR - text structure representation

- speech synthesizer input

